To evaluate the interaction between foliar application of salicylic acid and Bradyrhizobium inoculation on the morphophysiology of cowpea under water stress conditions, four genotypes (BRS Rouxinol, BRS Marataoã, BRS Aracê and BR 17 Gurguéia) were subjected to five combinations of water availability: 100% replacement of crop evapotranspiration (control); 50% replacement of crop evapotranspiration (water stress); water stress + salicylic acid; water stress + Bradyrhizobium inoculation; and water stress + salicylic acid + Bradyrhizobium inoculation. The experiment was set up in a 4 × 5 factorial randomized block design, with four replicates and four plants per plot. Water stress negatively affected the leaf water potential, growth, proline contents and antioxidant activity of the cowpea genotypes, and BRS Marataoã was the most sensitive. Under water stress conditions, Bradyrhizobium inoculation was efficient for BRS Rouxinol, but was only efficient for BRS Marataoã, BRS Aracê and BR 17 Gurguéia when associated with foliar application of salicylic acid, maintaining their values of leaf water potential, growth, proline content and activities of superoxide dismutase, ascorbate peroxidase, and catalase similar to those of the control treatment.
Silicon and proline play important physiological, metabolic and functional roles in plants, especially under water deficit conditions. Their application can mitigate the adverse effects of stress in crops by increasing water use efficiency and antioxidant activity. The objective of this study was to evaluate silicon (Si) as attenuator of the effects of water deficit on cowpea cultivars, through physiological, biochemical and growth indicators. The experimental design was randomized blocks with four cultivars (BRS Guariba, BRS Itaim, BRS Aracê and BRS Rouxinol) and four irrigation treatments associated or not with Si application (W100 - 100% ETo; W50 - 50% ETo; W50+100Si and W50+200Si, with 100 and 200 mg L-1 silicon, respectively), in a 4 x 4 factorial scheme, with five replicates. Leaf water potential, proline concentration, antioxidant enzymes and growth indicators were evaluated in cowpea plants. Under water deficit conditions, all cultivars showed reductions in leaf water potentials, which compromised plant growth. However, Si applications of 200 mg L-1 in the cultivar BRS Guariba and 100 and 200 mg L-1 in the cultivar BRS Itaim minimized the effects of stress, by increasing leaf water potential and the activity of the enzyme ascorbate peroxidase, in both cultivars, besides increasing proline concentration in the former and reducing proline concentration in the latter, which ensured the maintenance of growth. Despite the no contribution to the increase in water potential, Si applications of 100 and 200 mg L-1 in BRS Rouxinol and BRS Aracê, respectively, reduced the deleterious effects of the stress on their growth by regulating the enzymatic metabolism and proline.
Global climate change tends to intensify water unavailability, especially in semi-arid regions, directly impacting agricultural production. Cowpea is one of the crops with great socio-economic importance in the Brazilian semi-arid region, cultivated mainly under rainfed farming and considered moderately tolerant to water restriction. This species has physiological and biochemical mechanisms of adaptation to these stress factors, but there is still no clear vision of how these responses can not only allow survival, but also ensure yield advances in the field. Besides acclimation mechanisms, the exogenous application of abiotic (salicylic acid, silicon, proline, methionine, and potassium nitrate) and biotic (rhizobacteria) elicitors is promising in mitigating the effects of water restriction. The present literature review discusses the acclimation mechanisms of cowpea and some cultivation techniques, especially the application of elicitors, which can contribute to maintaining crop yield under different water scenarios. The application of elicitors is an alternative way to increase the sustainability of production in rainfed farming in semi-arid regions. However, the use of eliciting substances in cowpea still needs to be carefully explored, given the difficulties caused by genotypic and edaphoclimatic variability under field conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.