Human activities shape resources available to wild animals, impacting diet and probably altering their microbiota and overall health. We examined drivers shaping microbiota profiles of common cranes (Grus grus) in agricultural habitats by comparing gut microbiota and crane movement patterns (GPS-tracking) over three periods of
Siberian Crane Grus leucogeranus occurs only in Asia, and is Critically Endangered. The western population of the species has been almost extirpated, wintering at just two known sites, in Iran and India. To help conserve species that migrate long distances it is essential to have a comprehensive conservation plan that includes identification of migration routes and key resting areas. One Siberian Crane was satellite-tracked from the south Caspian Sea to its breeding grounds in Russia during the spring of 1996. The crane began migration on 6 March, and completed its migration on 1 May. This destination was formerly unknown as a breeding area for the species. During migration, the crane rested primarily at the eastern end of the Volga River delta. This suggests that the delta may be an important resting site for Siberian Crane.
In ecological and conservation studies, responsible researchers strive to obtain rich data while minimizing disturbance to wildlife and ecosystems. We assessed if samples collected noninvasively can be used for faecal microbiome research, comparing microbiota of noninvasively collected faecal samples to those collected from trapped common cranes at the same sites over the same periods. We found significant differences in faecal microbial composition (alpha and beta diversity), which likely did not result from noninvasive sample exposure to soil contaminants, as assessed by comparing bacterial oxygen use profiles. Differences might result from trapped birds' exposure to sedatives or stress. We conclude that if all samples are collected in the same manner, comparative analyses are valid, and noninvasive sampling may better represent host faecal microbiota because there are no trapping effects. Experiments with fresh and delayed sample collection can elucidate effects of environmental exposures on microbiota. Further, controlled tests of stressing or sedation may unravel how trapping affects wildlife microbiota.
In ecological and conservation studies, responsible researchers strive to obtain rich data while minimizing disturbance to wildlife and ecosystems. We assessed if samples collected noninvasively can be used for microbiome research, comparing microbiota of noninvasively collected fecal samples to those collected from trapped common cranes at the same sites over the same periods. We found significant differences in microbial composition (alpha and beta diversity), which were not accounted for by noninvasive samples' exposure to soil contaminants, as manually assessed by comparing differentially abundant taxa. They could result from trapped birds' exposure to sedatives. We conclude that if all samples are collected in the same manner, comparative analyses are valid, and noninvasive sampling may better represent host microbiota because there are no trapping effects. Experiments with fresh and delayed sample collection can elucidate effects of environmental exposures on microbiota. Further, stressing or sedation may unravel how trapping affects wildlife microbiota.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.