CUB domain-containing protein 1 (CDCP1) is a membrane protein that is highly expressed in several solid cancers. We reported previously that CDCP1 regulates anoikis resistance as well as cancer cell migration and invasion, although the underlying mechanisms have not been elucidated. In this study, we found that expression of CDCP1 in pancreatic cancer tissue was significantly correlated with overall survival and that CDCP1 expression in pancreatic cancer cell lines was relatively high among solid tumor cell lines. Reduction of CDCP1 expression in these cells suppressed extracellular matrix (ECM) degradation by inhibiting matrix metalloproteinase-9 secretion. Using the Y734F mutant of CDCP1, which lacks the tyrosine phosphorylation site, we showed that CDCP1 regulates cell migration, invasion, and ECM degradation in a tyrosine phosphorylation-dependent manner and that these CDCP1-associated characteristics were inhibited by blocking the association of CDCP1 and protein kinase Cdelta (PKCdelta). CDCP1 modulates the enzymatic activity of PKCdelta through the tyrosine phosphorylation of PKCdelta by recruiting PKCdelta to Src family kinases. Cortactin, which was detected as a CDCP1-dependent binding partner of PKCdelta, played a significant role in migration and invasion but not in ECM degradation of pancreatic cells. These results suggest that CDCP1 expression might play a crucial role in poor outcome of pancreatic cancer through promotion of invasion and metastasis and that molecules blocking the expression, phosphorylation, or the PKCdelta-binding site of CDCP1 are potential therapeutic candidates.
CUB-domain-containing protein 1 (CDCP1) is a type-I transmembrane protein that is highly expressed in colon, breast, and lung cancers. We recently revealed that CDCP1 is associated with and phosphorylated by Src family kinases and is involved in the regulation of anchorage independence of certain lung cancer cell lines. In this study, we examined whether CDCP1 is involved in the regulation of tumor progression of scirrhous gastric cancer, which is a diffusely infiltrative carcinoma with high invasion potential. Expression and phosphorylation levels of CDCP1 correlated with the invasive potential of scirrhous gastric cancers. Reduction of CDCP1 expression by siRNA suppressed migration, invasion, and anchorage independence without affecting the proliferation of highly invasive scirrhous gastric cancer cells. However, CDCP1 overexpression promoted gastric cancer cell migration with low potential of invasion. Loss of CDCP1 suppressed invasion and dissemination of cancer cells that were orthotopically implanted in the gastric wall of nude mice. Expression and phosphorylation of CDCP1 were also detected in cancer cells of surgically resected tissues of human scirrhous gastric cancer by immunohistochemical analysis. Our results suggest that CDCP1 promotes invasion and peritoneal dissemination of cancer cells through the regulation of cell migration and anchorage independence. Therefore, it is both a potential prognostic and therapeutic target in certain types of gastrointestinal cancers, and suppression of its phosphorylation might be a useful strategy for modulating cancer metastasis. (Am J Pathol
Involvement of Ras in cancer initiation is known, but recent evidence indicates a role in cancer progression, including metastasis and invasion; however, the mechanism is still unknown. In this study, it was determined that human lung cancer cells with Ras mutations, among other popular mutations, showed significantly higher expression of CUB domain-containing protein 1 (CDCP1) than those without. Furthermore, activated Ras clearly induced CDCP1, whereas CDCP1 knockdown or inhibition of CDCP1 phosphorylation by Src-directed therapy abrogated anoikis resistance, migration, and invasion induced by activated-Ras. Activation of MMP2 and secretion of MMP9, in a model of Ras-induced invasion, was found to be regulated through induction of phosphorylated CDCP1. Thus, CDCP1 is required for the functional link between Ras and Src signaling during the multistage development of human malignant tumors, highlighting CDCP1 as a potent target for treatment in the broad spectrum of human cancers associated with these oncogenes.
Periodontal ligament cells may play an important role in the successful regeneration of the periodontium. We investigated the effects of recombinant human bone morphogenetic protein-2 (rhBMP-2), one of the most potent growth factors that stimulates osteoblast differentiation and bone formation, on cell growth and osteoblastic differentiation in human periodontal ligament cells (HPLC) isolated from four adult patients. rhBMP-2 induced no significant changes in cell growth in any of the HPLCs. rhBMP-2 at concentrations over 50 ng/mL significantly stimulated alkaline phosphatase (ALPase) activity and parathyroid hormone (PTH)-dependent 3', 5'-cyclic adenosine monophosphate accumulation, which are early markers of osteoblast differentiation, in the HPLCs. rhBMP-2 (500 ng/mL) also slightly enhanced the level of PTH/PTH-related peptide receptor mRNA expression in these cells. While interleukin-1 beta enhanced ALPase activity stimulated with rhBMP-2, tumor necrosis factor-alpha inhibited the rhBMP-2-stimulated activity. Interleukin-6 induced no significant changes in ALPase activity stimulated with rhBMP-2. Although HPLCs, whether treated with rhBMP-2 or not, could not produce measurable amounts of osteocalcin, which is a marker of more mature osteoblasts, 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] induced osteocalcin mRNA expression and protein synthesis in these cells. rhBMP-2 inhibited 1,25(OH)2D3-induced osteocalcin synthesis in HPLCs at both the mRNA and protein levels. These results suggest that rhBMP-2 provides an anabolic effect on periodontal regeneration by stimulation of osteoblastic differentiation in human periodontal ligament cells, and that this stimulatory effect is differentially modulated by inflammatory cytokines during the course of periodontal regeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.