Titanium dioxide nanoparticles (TiO NPs) constitute the top five NPs in use today. In this study, oral administration of 50, 100, and 200 mg/kg body weight (b.w.) TiO NPs increases plasma glucose in mice, whereas 10 and 20 mg/kg b.w. TiO NPs did not. RNA sequencing (RNA-seq) technology was used to investigate genome-wide effects of TiO NPs. Clustering analysis of the RNA-seq data showed the most significantly enriched gene ontology terms and KEGG pathways related to the endoplasmic reticulum (ER) and ER stress. Molecular biology verification showed that 50 mg/kg b.w. and higher doses TiO NPs activated a xenobiotic biodegradation response and increased expression of cytochrome P450 family genes in mouse livers, thus inducing ER stress in mice. ER stress-activated MAPK and NF-κB pathways and induced an inflammation response, resulting in phosphorylation of the insulin receptor substrate 1 and, consequently, insulin resistance. This was the main mechanism by which TiO NPs increased plasma glucose in mice. Meanwhile, ER stress disturbed the monooxygenase system, and thus generated reactive oxygen species (ROS). Relief of ER stress with 4-phenylbutyric acid inhibited all the above effects of TiO NPs, including the generation of ROS. Therefore, TiO NP-induced ER stress was a decisive factor with a central role in plasma glucose disturbance in mice.
There have been few reports about the possible toxic effects of titanium dioxide (TiO2 ) nanoparticles on the endocrine system. We explored the endocrine effects of oral administration to mice of anatase TiO2 nanoparticles (0, 64 and 320 mg kg(-1) body weight per day to control, low-dose and high-dose groups, respectively, 7 days per week for 14 weeks). TiO2 nanoparticles were characterized by scanning and transmission electron microscopy (TEM) and dynamic light scattering (DLS), and their physiological distribution was investigated by inductively coupled plasma. Biochemical analyzes included plasma glucose, insulin, heart blood triglycerides (TG), free fatty acid (FFA), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), total cholesterol (TC), tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6 and reactive oxygen species (ROS)-related markers (total SOD, GSH and MDA). Phosphorylation of IRS1, Akt, JNK1, and p38 MAPK were analyzed by western blotting. Increased titanium levels were found in the liver, spleen, small intestine, kidney and pancreas. Biochemical analyzes showed that plasma glucose significantly increased whereas there was no difference in plasma insulin secretion. Increased ROS levels were found in serum and the liver, as evidenced by reduced total SOD activity and GSH level and increased MDA content. Western blotting showed that oral administration of TiO2 nanoparticles induced insulin resistance (IR) in mouse liver, shown by increased phosphorylation of IRS1 (Ser307) and reduced phosphorylation of Akt (Ser473). The pathway by which TiO2 nanoparticles increase ROS-induced IR were included in the inflammatory response and phosphokinase, as shown by increased serum levels of TNF-α and IL-6 and increased phosphorylation of JNK1 and p38 MAPK in liver. These results show that oral administration of TiO2 nanoparticles increases ROS, resulting in IR and increasing plasma glucose in mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.