The regulatory T (Treg) cells restrain immune responses through suppressor-function elaboration that is dependent upon expression of the transcription factor Foxp3. Despite a critical role for Treg cells in maintaining lympho-myeloid homeostasis, it remains unclear whether a single mechanism or multiple mechanisms of Treg cell-mediated suppression are operating in vivo and how redundant such mechanisms might be. Here we addressed these questions by examining the role of the immunomodulatory cytokine IL-10 in Treg cell-mediated suppression. Analyses of mice in which the Treg cell-specific ablation of a conditional IL-10 allele was induced by Cre recombinase knocked into the Foxp3 gene locus showed that although IL-10 production by Treg cells was not required for the control of systemic autoimmunity, it was essential for keeping immune responses in check at environmental interfaces such as the colon and lungs. Our study suggests that Treg cells utilize multiple means to limit immune responses. Furthermore, these mechanisms are likely to be nonredundant, in that a distinct suppressor mechanism most likely plays a prominent and identifiable role at a particular tissue and inflammatory setting.
Tissue maintenance and homeostasis can be achieved through replacement of dying cells by differentiating precursors, self-renewal of terminally differentiated cells or relies heavily on cellular longevity in poorly regenerating tissues. Regulatory T (Treg) cells represent an actively dividing cell population with critical function in suppression of lethal immune-mediated inflammation. The plasticity of Treg cells has been actively debated as it could factor importantly in protective immunity or autoimmunity. Here, by using inducible labeling and tracking of Treg cell fate in vivo, or transfers of highly purified Treg cells, we demonstrate remarkable stability of this cell population under physiologic and inflammatory conditions. Our results suggest that self-renewal of mature Treg cells serves as a major mechanism of maintenance of the Treg cell lineage in adult mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.