A particular case of the famous quasispecies model - the Crow-Kimura model with a permutation invariant fitness landscape - is investigated. Using the fact that the mutation matrix in the case of a permutation invariant fitness landscape has a special tridiagonal form, a change of the basis is suggested such that in the new coordinates a number of analytical results can be obtained. In particular, using the eigenvectors of the mutation matrix as the new basis, we show that the quasispecies distribution approaches a binomial one and give simple estimates for the speed of convergence. Another consequence of the suggested approach is a parametric solution to the system of equations determining the quasispecies. Using this parametric solution we show that our approach leads to exact asymptotic results in some cases, which are not covered by the existing methods. In particular, we are able to present not only the limit behavior of the leading eigenvalue (mean population fitness), but also the exact formulas for the limit quasispecies eigenvector for special cases. For instance, this eigenvector has a geometric distribution in the case of the classical single peaked fitness landscape. On the biological side, we propose a mathematical definition, based on the closeness of the quasispecies to the binomial distribution, which can be used as an operational definition of the notorious error threshold. Using this definition, we suggest two approximate formulas to estimate the critical mutation rate after which the quasispecies delocalization occurs.
We study general properties of the leading eigenvalue w(q) of Eigen's evolutionary matrices depending on the probability q of faithful reproduction. This is a linear algebra problem that has various applications in theoretical biology, including such diverse fields as the origin of life, evolution of cancer progression, and virus evolution. We present the exact expressions for w(q), w ′ (q), w ′′ (q) for q = 0, 0.5, 1 and prove that the absolute minimum of w(q), which always exists, belongs to the interval [0, 0.5]. For the specific case of a single peaked landscape we also find lower and upper bounds on w(q), which are used to estimate the critical mutation rate, after which the distribution of the types of individuals in the population becomes almost uniform. This estimate is used as a starting point to conjecture another estimate, valid for any fitness landscape, and which is checked by numerical calculations. The last estimate stresses the fact that the inverse dependence of the critical mutation rate on the sequence length is not a generally valid fact. Therefore, the discussions of the error threshold applied to biological systems must take this fact into account.
A two-valued fitness landscape is introduced for the classical Eigen's quasispecies model. This fitness landscape can be considered as a direct generalization of the so-called single- or sharply peaked landscape. A general, non-permutation invariant quasispecies model is studied, and therefore the dimension of the problem is [Formula: see text], where N is the sequence length. It is shown that if the fitness function is equal to [Formula: see text] on a G-orbit A and is equal to w elsewhere, then the mean population fitness can be found as the largest root of an algebraic equation of degree at most [Formula: see text]. Here G is an arbitrary isometry group acting on the metric space of sequences of zeroes and ones of the length N with the Hamming distance. An explicit form of this exact algebraic equation is given in terms of the spherical growth function of the G-orbit A. Motivated by the analysis of the two-valued fitness landscapes, an abstract generalization of Eigen's model is introduced such that the sequences are identified with the points of a finite metric space X together with a group of isometries acting transitively on X. In particular, a simplicial analog of the original quasispecies model is discussed, which can be considered as a mathematical model of the switching of the antigenic variants for some bacteria.
Sewall Wright's adaptive landscape metaphor penetrates a significant part of evolutionary thinking. Supplemented with Fisher's fundamental theorem of natural selection and Kimura's maximum principle, it provides a unifying and intuitive representation of the evolutionary process under the influence of natural selection as the hill climbing on the surface of mean population fitness. On the other hand, it is also well known that for many more or less realistic mathematical models this picture is a sever misrepresentation of what actually occurs. Therefore, we are faced with two questions. First, it is important to identify the cases in which adaptive landscape metaphor actually holds exactly in the models, that is, to identify the conditions under which system's dynamics coincides with the process of searching for a (local) fitness maximum. Second, even if the mean fitness is not maximized in the process of evolution, it is still important to understand the structure of the mean fitness manifold and see the implications of this structure on the system's dynamics.Using as a basic model the classical replicator equation, in this note we attempt to answer these two questions and illustrate our results with simple well studied systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.