The paper considers the main tasks of autonomous unmanned underwater vehicles (AUV), lists the requirements for the onboard computing environment. Comparative analysis of central processing unit (CPU), graphics processing unit (GPU), field-programmable gate array (FPGA) and application-specific integrated circuit (ASIC) has been carried out. The FPGA was considered in more detail as the basis of the AUV onboard computing environment. The given example of designing a device that calculates an arithmetic function demonstrates the high performance of an FPGA and the complexity of developing a simple device in comparison with a similar task on a CPU.
The aim of the work is to develop a motion control system using an object-oriented programming approach. The objectives of the work are to build a mathematical model of the motion control system and develop an interface for user interaction with the program. The developed interface can be used as a simulation of the operation of surface vehicles, testing and debugging of the control system.
The paper deals with the mathematical modeling of the controlled motion of an automatic underwater vehicle under conditions of inaccuracy and uncertainty of information support. Methodological and theoretical approaches based on the application of the principle of complexity and fuzzy logic are proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.