Here we demonstrate that HMGN1, a nuclear protein that binds to nucleosomes and reduces the compaction of the chromatin fiber, modulates histone posttranslational modifications. In Hmgn1-/- cells, loss of HMGN1 elevates the steady-state levels of phospho-S10-H3 and enhances the rate of stress-induced phosphorylation of S10-H3. In vitro, HMGN1 reduces the rate of phospho-S10-H3 by hindering the ability of kinases to modify nucleosomal, but not free, H3. During anisomycin treatment, the phosphorylation of HMGN1 precedes that of H3 and leads to a transient weakening of the binding of HMGN1 to chromatin. We propose that the reduced binding of HMGN1 to nucleosomes, or the absence of the protein, improves access of anisomysin-induced kinases to H3. Thus, the levels of posttranslational modifications in chromatin are modulated by nucleosome binding proteins that alter the ability of enzymatic complexes to access and modify their nucleosomal targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.