We report the observation of small group velocities of order 90 meters per second, and large group delays of greater than 0.26 ms, in an optically dense hot rubidium gas (≈ 360 K). Media of this kind yield strong nonlinear interactions between very weak optical fields, and very sharp spectral features.The result is in agreement with previous studies on nonlinear spectroscopy of dense coherent media.
We introduce a hybrid technique that combines the robustness of frequency-resolved coherent anti-Stokes Raman scattering (CARS) with the advantages of time-resolved CARS spectroscopy. Instantaneous coherent broadband excitation of several characteristic molecular vibrations and the subsequent probing of these vibrations by an optimally shaped time-delayed narrowband laser pulse help to suppress the nonresonant background and to retrieve the species-specific signal. We used this technique for coherent Raman spectroscopy of sodium dipicolinate powder, which is similar to calcium dipicolinate (a marker molecule for bacterial endospores, such as Bacillus subtilis and Bacillus anthracis), and we demonstrated a rapid and highly specific detection scheme that works even in the presence of multiple scattering.
We study basic issues central to the storage of quantum information in a coherently prepared atomic medium such as the role of adiabaticity. We also propose and demonstrate transporting, multiplexing, and time reversing of stored light.
We prove that it is possible to freeze a light pulse (i.e., to bring it to a full stop) or even to make its group velocity negative in a coherently driven Doppler broadened atomic medium via electromagnetically induced transparency (EIT). This remarkable phenomenon of the ultraslow EIT polariton is based on the spatial dispersion of the refraction index n(omega,k), i.e., its wave number dependence, which is due to atomic motion and provides a negative contribution to the group velocity. This is related to, but qualitatively different from, the recently observed light slowing caused by large temporal (frequency) dispersion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.