The second-generation specification of the digital video broadcasting for satellite (DVB-S2) was developed in 2003 with the aim of improving the existent broadcasting standard DVB-S. The main new features introduced by DVB-S2 included increased baud rates, higher cardinality constellations (up to 32 points), and more efficient binary codes. The extension to DVB-S2, approved in 2014 with the name DVB-S2X, together with continuous technological evolution, moves further steps in this direction, with the use of constellations with cardinality up to 256 points, improved granularity of modulation and coding schemes, and the possibility to increase the baud rate. In this scenario, it is important to be able to ascertain what is the best transceiver structure, starting from the choice of the shaping pulse and the baud rate of the transmitted signals and ending with the most promising receiver architectures, with the aim of maximizing the spectral efficiency. In this paper, we will discuss some of the aspects of this investigation, namely, the optimization of transmission parameters and the description of an efficient receiver. We will then assess the performance of the proposed scheme in comparison with a classical DVB-S2 architecture. Some synchronization aspects will also be discussed, to account for the impairments introduced by the channel.A detector taking into account a larger memory cannot achieve significant performance gains after the application of an equalizer, hence the choice of a symbol-by-symbol detector [3].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.