Aims/Introduction
Non‐alcoholic fatty liver disease (NAFLD) is often observed in individuals with type 2 diabetes mellitus, and it is known that the presence of type 2 diabetes mellitus leads to the aggravation of NAFLD. The aim of this study was to compare the possible effects of three kinds of oral hypoglycemic agents on NAFLD in individuals with type 2 diabetes mellitus.
Materials and Methods
We carried out a prospective clinical trial (a randomized and open‐label study) in patients with type 2 diabetes mellitus and NAFLD. A total of 98 patients were randomly allocated either to the dapagliflozin (
n
= 32), pioglitazone (
n
= 33) or glimepiride (
n
= 33) group, and the patients took these drugs for 28 weeks. The primary end‐point was the change of the liver‐to‐spleen ratio on abdominal computed tomography.
Results
There was no difference in baseline clinical characteristics among the three groups. Dapagliflozin, pioglitazone and glimepiride ameliorated hyperglycemia similarly. Bodyweight and visceral fat area were significantly decreased only in the dapagliflozin group. Serum adiponectin levels were markedly increased in the pioglitazone group compared with the other two groups. Dapagliflozin and pioglitazone, but not glimepiride, significantly increased the liver‐to‐spleen ratio, and the effects of dapagliflozin and pioglitazone on the liver‐to‐spleen ratio were comparable.
Conclusions
The present study showed that the decrease of visceral fat area and the increase of adiponectin level contributed to the improvement of NAFLD in patients with type 2 diabetes mellitus. Furthermore, dapagliflozin and pioglitazone exerted equivalent beneficial effects on NAFLD in patients with type 2 diabetes mellitus, although it seemed that these two drugs had different mechanisms of action.
Our previous study indicated that recombinant human soluble thrombomodulin (rhsTM) could attenuate brain damage when administered as a bolus in the cerebral ischaemic early phase. Then, we considered that treatment with rhsTM may show therapeutic effects even when administered in the ischaemic delayed phase, because rhsTM has an action of inhibiting high-mobility group box 1 (HMGB1) as a late mediator of lethal systemic inflammation. This study was performed to investigate the effects of delayed treatment with rhsTM on ischaemic brain damage induced by high HMGB1 level in mice subjected to 4-hour middle cerebral artery occlusion (MCAO). One day after MCAO, rhsTM was administered intraperitoneally at a dose of 1 or 5 mg/kg once a day for 7 days. Neurological score, motor coordination and HMGB1 levels were measured 1, 3 and 7 days after MCAO. The presence of activated microglia was evaluated 7 days after MCAO. Systemic HMGB1 levels increased 1 to 7 days after MCAO and were higher at 7 days compared with day 1. At the same time, survival rate decreased, and activated microglia increased in the infarct area. Treatment with rhsTM improved neurological score, motor coordination, survival and prevented brain damage. Moreover, rhsTM decreased both HMGB1 level and number of activated M1 microglia. The results of this study indicated that rhsTM improved functional outcomes via inhibition of HMGB1 up-regulation and M1 microglial activation in the cerebral ischaemic delayed phase. rhsTM may become a new therapeutic agent with a wide therapeutic time window in patients with cerebral ischaemia.
IntroductionSodium-glucose co-transporter 2 (SGLT2) inhibitors function not only to reduce hyperglycemia but also to ameliorate liver injury and reduce body weight. The aim of this study was to examine in which subjects SGLT2 inhibitors are more effective for glycemic control, liver injury, and obesity in Japanese subjects with type 2 diabetes mellitus.MethodsWe enrolled a total of 156 subjects with type 2 diabetes who initiated SGLT2 inhibitor treatment after September 1, 2014 in Kawasaki Medical School (Protocol No. 2375). We evaluated the alteration of glycemic control, liver injury, body mass composition, and various clinical parameters.ResultsSGLT2 inhibitors significantly ameliorated glycemic control and improved liver injury in Japanese subjects with type 2 diabetes. SGLT2 inhibitors were more effective for liver injury when glycemic control was improved with SGLT2 inhibitors. In multivariate analyses, the amelioration of glycemic control was an independent determinant factor for the improvement of liver damage in Japanese subjects with type 2 diabetes. The reverse was also correct; the improvement of liver damage was an independent determinant factor for the amelioration of glycemic control.ConclusionRecovery of liver injury with SGLT2 inhibitor treatment was closely associated with their effects on glycemic control in Japanese subjects with type 2 diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.