The rigidity of an injection‐molded isotactic polypropylene (PP) containing 1,3:2,4‐bis‐o‐(4‐methylbenzylidene)‐D‐sorbitol (MDBS) as a crystal nucleating agent can be enhanced by selection of appropriate processing conditions. A new method by differential scanning calorimetry measurements showed that the dissolution temperature of 0.4 wt.% MDBS in molten PP is around 210°C. When injection molding was performed below the dissolution temperature, for example, 190°C, the molecular orientation of PP was greatly enhanced. Although this is an anomalous condition for the system to expect good transparency, the product obtained showed a high flexural modulus. In contrast, with high‐temperature processing at 240°C, that is, conventional condition, the modulus decreased because of poor molecular orientation. Transmission electron microscopy observation revealed that MDBS fibrils strongly orient to the flow direction under the low‐temperature processing, in which network structure of MDBS fibers is not detected. The oriented MDBS fibers led to a well‐developed shish‐kebab structure, which is responsible for the pronounced rigidity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.