The aim of this research is to reveal and determine the sizes of plastically deformed areas in metallic non-magnetic materials with the eddy current method. The manuscript contains computational studies to assess the feasibility of using the eddy current method to determine the size of the plastically deformed areas in the metal. The authors developed a two-dimensional mathematical model of the interaction of the electromagnetic fi eld with the control object. The model included poly-harmonic fi eld excitation in a locally deformed plate, and the deformation was modeled in the form of plastically deformed areas under the indents obtained by the ball indentation. The developed model helped to establish the correlation dependencies and linked the informative parameters of the eddy current method with the size of the metal's plastically deformed zone. The authors obtained the calibration curve for copper, the values of which allowed to determine the factual sizes of the plastically deformed area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.