A one-dimensional model is developed to analyze nonlinear standing waves in an acoustical resonator. The time domain model equation is derived from the fundamental gasdynamics equations for an ideal gas. Attenuation associated with viscosity is included. The resonator is assumed to be of an axisymmetric, but otherwise arbitrary shape. In the model the entire resonator is driven harmonically with an acceleration of constant amplitude. The nonlinear spectral equations are integrated numerically. Results are presented for three geometries: a cylinder, a cone, and a bulb. Theoretical predictions describe the amplitude related resonance frequency shift, hysteresis effects, and waveform distortion. Both resonance hardening and softening behavior are observed and reveal dependence on resonator geometry. Waveform distortion depends on the amplitude of oscillation and the resonator shape. A comparison of measured and calculated wave shapes shows good agreement.
An analytic solution is derived for acoustic streaming generated by a standing wave in a viscous fluid that occupies a two-dimensional channel of arbitrary width. The main restriction is that the boundary layer thickness is a small fraction of the acoustic wavelength. Both the outer, Rayleigh streaming vortices and the inner, boundary layer vortices are accurately described. For wide channels and outside the boundary layer, the solution is in agreement with results obtained by others for Rayleigh streaming. As channel width is reduced, the inner vortices increase in size relative to the Rayleigh vortices. For channel widths less than about 10 times the boundary layer thickness, the Rayleigh vortices disappear and only the inner vortices exist. The obtained solution is compared with those derived by Rayleigh, Westervelt, Nyborg, and Zarembo.
A formulation of the elastic energy density for an isotropic medium is presented that permits separation of effects due to compressibility and shear deformation. The motivation is to obtain an expansion of the energy density for soft elastic media in which the elastic constants accounting for shear effects are of comparable order. The expansion is carried out to fourth order to ensure that nonlinear effects in shear waves are taken into account. The result is E≃E0(ρ)+μI2+13AI3+DI22, where ρ is density, I2 and I3 are the second- and third-order Lagrangian strain invariants used by Landau and Lifshitz, μ is the shear modulus, A is one of the third-order elastic constants introduced by Landau and Lifshitz, and D is a new fourth-order elastic constant. For processes involving mainly compressibility E≃E0(ρ), and for processes involving mainly shear deformation E≃μI2+13AI3+DI22.
The motion of a rigid sphere in a viscoelastic medium in response to an acoustic radiation force of short duration was investigated. Theoretical and numerical studies were carried out first. To verify the developed model, experiments were performed using rigid spheres of various diameters and densities embedded into tissue-like, gel-based phantoms of varying mechanical properties. A 1.5 MHz, single-element, focused transducer was used to apply the desired radiation force. Another single-element, focused transducer operating at 25 MHz was used to track the displacements of the sphere. The results of this study demonstrate good agreement between theoretical predictions and experimental measurements. The developed theoretical model accurately describes the displacement of the solid spheres in a viscoelastic medium in response to the acoustic radiation force.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.