Предлагается нелинейная модель эволюции случайных полей, основанная на аппроксимации кусочно-линейными дифференциальными уравнениями в частных производных со стохастическими граничными условиями. Ключевые слова и фразы: обобщенные случайные поля, нелинейное эволю ционное уравнение, стохастические граничные условия, Соболевские суперпро странства.We have in mind a generalized random field № = {&, «*)). vec 0°°( G)} in a region G С B. d such that, with time t £ R 1 going, its evolution goes according to non-linear stochastic differential equation
dt(t) = A(t,e i )dt+B[t,e i )dri(t)where drift and diffusion operators A(t, £*), £')) depend on a whole «past» = {£(*). s < so (f, «*)) = iV, №o)) + J* (v>, A(a,V)) ds+J* B(s,e)dr,(s)), t > *o, (2) for all test functions ip £ CQ°(G). A problem is on stochastic boundary conditions for the corresponding random field £ = |^(*), * £ over a space-time cylinder G x I, I = (£ 0 ,t*)i which determine £ £ W(G x /) as a unique solution from an appropriate functional class W(G x /). Suppose, the evolution goes in a such way that approximately we have d£{t) = A£(t) dt + B dn(t) (3) on any sufficiently small time interval /д": s < t < s + As, where А, В are appropriate linear operators, depending on the past f * up to a «current» time moment s. Then, we can approach the boundary problem by means of a piecewise linear approximation for f, taking a partition to < , 4) d = У (в*ч>{-Л Mt)), v e CS°(G x /д< ; .)} (4) as a generalized random field which is meansquare continuous over test functions