Reducing the dimensions of optical gyroscopes is a crucial task and resonant fiber optic gyroscopes are promising candidates for its solution. The paper presents a prototype of a miniature resonant interferometric gyroscope of a strategic accuracy class. Due to the use of passive optical elements in this gyroscope, it has a great potential for miniaturization, alongside a low production cost and ease of implementation, since it does not require many feedback loops. The presented prototype shows results on a zero instability of 20°/h and an angle random walk of 0.16°/√h. A theoretical model explaining the nature of the multipath interference of resonant spectra and establishing the relationship between the resonator parameters and the output parameters of the presented prototype is proposed. The results predicted are in agreement with the experimental data. The prototype gyroscope demonstrates a scale factor instability and a change in the average signal level, which is due to the presence of polarization non-reciprocity, occurring due to the induced birefringence in the single-mode fiber of the contour. This problem requires further investigation to be performed.
Measurement of the object angular position and its change is one of the important tasks in measurement technique. Our method is based on determination of the angular position of a 2D periodical optical pattern (2D mark) at the object, captured by the sensor of a digital camera. System performance can be frustrated by errors in determination of the spot coordinates on the camera sensor; by the presence of lens aberrations; by deviations from the parallelism of the pattern planes and the camera sensor; and by differences between the actual spots positions and the ideal grid. In the paper we discuss the effect of these errors and the way to correct or eliminate them. We have developed the mathematical routine and the corresponding numerical codes for correction of the said errors. The code and the routine we checked in a real experiment. It has shown that the correction decreases the standard deviation in 15 times.
Today, the task of developing microoptical gyroscopes is topical. Usually, tunable lasers with a built-in frequency stabilization system are used in such gyroscopes. They are comparatively bulky, which hinders the real miniaturization of optical gyroscopes. We propose a new approach implemented by using a Mach–Zehnder modulator with a passive ring resonator connected to one of its arms. This makes it possible to obtain a mutual configuration and makes the use of a tunable laser optional. Two ring resonators made of the polarization-maintaining fiber, suitable for use as sensitive elements of a gyroscope, were realized and investigated. Their Q-factor is equal to 14.5 × 106 and 28.9 × 106. The maximum sensitivity of the proposed method when using the described resonators is 3.2 and 1.8 °/h, respectively. The first experimental setup of a resonator gyroscope implementing this approach has been manufactured and analyzed. When measuring the rotation speed by the quasi-harmonic signal span and its phase, the measurement accuracy was approximately 11 and 0.4 °/s, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.