The article presents a survey of Russian researchers’ synchronous international scientific mobility as an element of the global system of scientific labor market. Synchronous international scientific mobility is a simultaneous holding of scientific positions in institutions located in different countries. The study explores bibliometric data from the Web of Science Core Collection and socio-economic indicators for 56 countries. In order to examine international scientific mobility, we use a method of affiliations. The paper introduces a model of synchronous international scientific mobility. It enables to specify country’s involvement in the international division of scientific labor. Synchronous international scientific mobility is a modern form of the international division of labor in science. It encompasses various forms of part-time, temporary and remote employment of scientists. The analysis reveals the distribution of Russian authors in the space of affiliations, and directions of upward/downward international scientific mobility. The bibliometric characteristics of mobile authors are isomorphic to those of receiver country authors. Synchronous international scientific mobility of Russian authors is determined by differences in scientific impacts between receiver and donor countries.
Recently, there has been a surge of interest in new data emerged due to the rapid development of the information technologies in scholarly communication. Since the 2010s, altmetrics has become a common trend in scientometric research. However, researchers have not treated in much detail the question of the probability distributions underlying these new data. The principal objective of this study was to investigate one of the classic problems of scientometrics—the problem of citation and readership distributions. The study is based on the data obtained from two information systems: Web of Science and Mendeley. Here we based on the concept of the cumulative empirical distribution function to explore the differences and similarities between citations and readership counts of biological journals indexed in Web of Science and Mendeley. The basic idea was to determine, for any journal, a “size” (it is said to be the topological rank) of citation and readership empirical cumulative distributions, and then to compare distributions of the topological ranks of Web of Science and Mendeley. In order to verify our model, we employ it to the bibliometric and altmetric research of 305 biological journals indexed in Journal Citation Reports 2015. The findings show that both distributions of the topological rank of biological journals are statistically close to the Wakeby distribution. The findings presented in this study add to our understanding of information processes of the scholarly communication in the new digital environment.
The paper intends to contribute to a better understanding of the phenomenon of scientific capital. Scientific capital is a wellknown concept for measuring and assessing the accumulated recognition and the specific scientific power. The concept of scientific capital developed by Bourdieu is used in international social science research to explain a set of scholarly properties and practices. Mathematical modeling is applied as a lens through which the scientific capital is addressed. The principal contribution of this paper is an axiomatic characterization of scientific capital in terms of natural axioms. The application of the axiomatic method to scientific capital reveals novel insights into problem still not covered by mathematical modeling. Proposed model embraces the interrelations between separate sociological variables, providing a unified sociological view of science. Suggested microvariational principle is based upon postulate, which affirms that (under suitable conditions) the observed state of the agent in scientific field maximizes scientific capital. Its value can be roughly imagined as a volume of social differences. According to the considered macrovariational principle, the actual state of scientific field makes so-called energy functional (which is associated with the distribution of scientific capital) minimal.
The paper proposes a heuristic approach to modeling the cumulative distribution of citations of papers in scientific journals by means of the Wakeby distribution. The Markov process of citation leading to the Wakeby distribution is analyzed using the terminal time formalism. The Wakeby distribution is derived in the paper from the simple and general inhomogeneous Choquet–Deny convolution equation for a non-probability measure. We give statistical evidence that the Wakeby distribution is a reasonable approximation of the empirical citation distributions.AMS Subject Classification: 91D30; 91D99
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.