Although pain is indispensable for survival, chronic pain places a heavy burden on humans. As the efficacy of opioid treatment is limited, the development of alternative methods of pain relief without medication is desirable. Recently, we have developed a novel method of physical analgesia using an adhesive “pyramidal thorn patch.” When we apply about 3 trials of these patches on the skin of a pain region, the pain region moves toward the spinal cord like a “cutaneous rabbit,” and finally, the pain vanishes. In the present review, we propose a molecular mechanism for this analgesic method or pain relief following application of the pyramidal thorn patch where firstly the mechanoreceptors and their related nerves under the skin are activated in response to touch. Transient receptor potential (TRP) channels serve as mechanosensitive channels within these mechanoreceptors. We further propose that activation of the nerves connected with the mechanoreceptors releases oxytocin, which has an antinociceptive function and activates TRP channels to hyperpolarize the pain signal nerves. We believe that our system will pave the way for alternative pain treatment.
In some types of meditation, such as mindfulness and Zen, breathing is the focus of attention, whereas during an excessive, short-period of anaerobic exercise, the muscles become the focus of attention. Thus, during both efforts, one’s attention is focused on a certain feature of the body. Both meditation and exercise generally provide mental refreshment to humans. We hypothesized that the same brain regions are activated by both efforts in humans. To examine this hypothesis, we engaged participants in 3 tasks: meditation, exercise, and a control task. After each task, the participants underwent a 2-back test to concentrate their thoughts, while changes in their blood hemoglobin levels were simultaneously monitored using near-infrared spectroscopy (NIRS). Seventeen participants (20–24 years of age; 11 men, 6 women) were enrolled. We applied a fast-Fourier transform (FFT) analysis to the NIRS wave data and calculated the correlation coefficients of the FFT data between (1) meditation and control, (2) exercise and control, and (3) meditation and exercise, at the orbitofrontal cortex (OFC) and dorsolateral prefrontal cortex (DLPFC), brain areas that are generally involved in mental refreshment. A significant difference in the correlation coefficients between the OFC and DLPFC was detected in the meditation and exercise analysis, and signal source analysis confirmed that the NIRS waves spread from the right and left OFC edges (i.e., right and left temples) toward the center. Our results suggest that both meditation and exercise activate the OFC, which is involved in emotional reactions and motivation behavior, resulting in mental refreshment.
Pain in the elbow, shoulder, knee, lower back, and various other joints is relieved by adhesion of pyramidal thorn patches. To elucidate the pain relief mechanism induced by the patches, we established a quantitative method for estimating the pain reduction and investigated the brain regions that change in association with pain relief. We first attempted to quantify the pain relief using transcutaneous electric stimulation (TCES) and a visual analog scale (VAS), and then applied near-infrared spectroscopy (NIRS) to the prefrontal cortex, including the dorsolateral prefrontal cortex (DLPFC) and the orbitofrontal cortex (OFC). We also examined the salivary oxytocin levels, which are thought to reflect oxytocin secretion levels from the posterior pituitary in the brain. Application of pyramidal thorn patches to pain regions decreased the pain degree estimated using TCES and VAS. Oxyhemoglobin levels were likely to be decreased in the left DLPFC on the basis of NIRS measurements during patch treatment, suggesting that the left DLPFC is involved in pain relief. On the other hand, the salivary oxytocin levels varied widely. A potential reason for the varying salivary oxytocin levels is its utilization in the pain region as an analgesic agent. Our results suggest that the left DLPFC will become a target brain region for pain therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.