Topological analysis of experimental and theoretical (molecular and crystal) electron densities of p-nitroaniline and p-amino-p H -nitrobiphenyl reveals considerable discrepancies between experiment and theory for the bond critical points properties. Particularly large differences occur for the positive curvature along the bond path (! 3 ). The differences become somewhat smaller when more extended basis sets and correlation effects are introduced in the theoretical calculations. The effect of the crystal matrix on the properties of bond critical points is evaluated for the p-nitroaniline molecule using the 6-21G** and 6-31G** basis sets. The differences between the isolated molecule and the molecule in the crystal are too small to explain the quantitative disagreement between the theoretical and experimental topologies reported in the literature and found in the current study. For most bonds, the observed changes in the properties of the electron density agree well for both basis sets but some discrepancies are found for changes in ! 3 for NÐH and aromatic CÐC bonds. When the theoretical densities are projected into the multipole density functions through re®nement of the theoretical structure factors, the topological properties change and differences between theory and experiment are reduced. The main origin of the observed discrepancies is attributed to the nature of the radial functions in the experimental multipole model.
A cancer candidate, compound 1, is a weak base with two heterocyclic basic nitrogens and five hydrogen-bonding functional groups, and is sparingly soluble in water rendering it unsuitable for pharmaceutical development. The crystalline acid-base pairs of 1, collectively termed solid acid-base complexes, provide significant increases in the solubility and bioavailability compared to the free base, 1. Three dicarboxylic acid-base complexes, sesquisuccinate 2, dimalonate 3, and dimaleate 4, show the most favorable physicochemical profiles and are studied in greater detail. The structural analyses of the three complexes using crystal structure and solid-state NMR reveal that the proton-transfer behavior in these organic acid-base complexes vary successively correlating with Delta pKa. As a result, 2 is a neutral complex, 3 is a mixed ionic and zwitterionic complex and 4 is an ionic salt. The addition of the acidic components leads to maximized hydrogen bond interactions forming extended three-dimensional networks. Although structurally similar, the packing arrangements of the three complexes are considerably different due to the presence of multiple functional groups and the flexible backbone of 1. The findings in this study provide insight into the structural characteristics of complexes involving heterocyclic bases and carboxylic acids, and demonstrate that X-ray crystallography and 15N solid-state NMR are truly complementary in elucidating hydrogen bonding interactions and the degree of proton transfer of these complexes.
It is demonstrated that the fluid-phase thermodynamics theory conductor-like screening model for real solvents (COSMO-RS) as implemented in the COSMOtherm software can be used for accurate and efficient screening of coformers for active pharmaceutical ingredient (API) cocrystallization. The excess enthalpy, H(ex) , between an API-coformer mixture relative to the pure components reflects the tendency of those two compounds to cocrystallize. Thus, predictive calculations may be performed with decent effort on a large set of molecular data in order to identify potentially new cocrystal systems. In addition, it is demonstrated that COSMO-RS theory allows reasonable ranking of coformers for API solubility improvement. As a result, experiments may be focused on those coformers, which have an increased probability of cocrystallization, leading to the largest improvement of the API solubility. In a similar way as potential coformers are identified for cocrystallization, solvents that do not tend to form solvates may be determined based on the highest H(ex) s with the API. The approach was successfully tested on tyrosine kinase inhibitor axitinib, which has a propensity to form relatively stable solvated structures with the majority of common solvents, as well as on thiophanate-methyl and thiophanate-ethyl benzimidazole fungicides, which form channel solvates.
The atoms in molecules (AIM) theory may be used to derive atomic charges, atomic volumes and molecular dipole moments from the charge density. The theory is applied to theoretical periodic Hartree±Fock (PHF), density-functional (DFT) and experimental X-ray densities of p-nitroaniline using the program TOPOND and a newly developed program, TOPXD, for topological analysis of densities described by the Coppens±Hansen multipole formalism. Results show that, like dipole moments derived directly from the multipole re®nement, AIMderived atomic and molecular moments are dependent on the multipole model used. As expected, large differences are found between charges derived from the monopole parameters and those from AIM analysis of the experimental model density. Differences between the H -restricted multipole model (KRMM) and the unrestricted multipole model (UMM) results are preserved in the AIM analysis. The enhancement of the molecular dipole moment of p-nitroaniline in the solid state is con®rmed by both experiment and theory but the experimental dipole moment is in much better agreement with theoretical periodic Hartree± Fock and, especially, periodic DFT (PDFT) data when KRMM is used in the re®nement. The AIM analysis allows a rigorous de®nition of the charges of the atoms in molecules and provides a realistic basis for comparison between molecules and between experiment and theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.