In the paper, we consider a ring structure on the Cartesian product of two sets of integer multisets. In this way, we introduce a ring of integer multinumbers as a quotient of the Cartesian product with respect to a natural equivalence. We examine the properties of this ring and construct some isomorphisms to subrings of polynomials and Dirichlet series with integer coefficients. In addition, we introduce finite rings of multinumbers “modulo (p,q)” and propose an algorithm for construction of invertible elements in these rings that may be applicable in Public-key Cryptography. An analog of the Little Fermat Theorem for integer multinumbers is proved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.