A broad family of the nowadays studied low-dimensional systems, including 2D materials, demonstrate many fascinating properties, which however depend on the atomic composition as well as on the system dimensionality. Therefore, the studies of the electronic correlation effects in the new 2D materials is of paramount importance for the understanding of their transport, optical and catalytic properties. Here, by means of electron spectroscopy methods in combination with density functional theory calculations we investigate the electronic structure of a new layered van der Waals $$\hbox {FePX}_3$$
FePX
3
(X: S, Se) materials. Using systematic resonant photoelectron spectroscopy studies we observed strong resonant behavior for the peaks associated with the $$3d^{n-1}$$
3
d
n
-
1
final state at low binding energies for these materials. Such observations clearly assign $$\hbox {FePX}_3$$
FePX
3
to the class of Mott–Hubbard type insulators for which the top of the valence band is formed by the hybrid Fe-S/Se electronic states. These observations are important for the deep understanding of this new class of materials and draw perspectives for their further applications in different application areas, like (opto)spintronics and catalysis.
Layered transition metal trichalcogenides MPX3 (M: transition metal; X: S, Se) demonstrate a wide spectrum of properties and are widely proposed as effective materials for the water splitting reactions. Among these materials, NiPX3 are the most promising ones because their electronic structures, band gaps and positions of the valence and conduction bands edges fit to the potentials characteristic for the oxygen and hydrogen evolution reactions. Here, first steps of a detailed theoretical description on the adsorption of water molecules on pristine and defected (chalcogen vacancies) surfaces of NiPX3 are presented and it is shown that in all cases a physisorption takes the place with adsorption energies do not exceeding −650 meV and water dissociative adsorption is unfavorable. This work provides a general description for water molecules interaction with MPX3 and can serve as a basis for further studies on more complicated water/MPX3 reactions.
Presently a lot of efforts are devoted to the investigation of new two-dimensional magnetic materials, which are considered as promising for the realization of the future electronics and spintronics devices....
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.