Lung cancer is the most common cause of death from oncological diseases all over the world. Primary treatment of patients with the early stage of non-small cell lung cancer is a surgery. However, after surgery 30%-85% of patients undergo disease progression. In order to improve the results of treatment of patients with non-small cell lung cancer it is necessary to separate a group of patients with dismal prognosis for whom adjuvant chemotherapy will permit improving the survival rate. The aim of our research was to create a forecasting model with a view to detect the patients with the early stage of non-small cell lung cancer and dismal prognosis. Our research covered 254 patients with the early stage of non-small cell lung cancer who underwent a cure from June 2008 till December 2012 in the department of thoracic surgery of Zaporizhzhia Regional Clinical Oncologic Dispensary. In order to identify the factors connected with the risks of low survival rate of patients with the early stage of non-small cell lung cancer after curative treatment (surgical treatment, adjuvant chemotherapy), a method of design of neural network models of classification was used. 39 factors were taken for input characteristics. During investigation two forecasting models were built. As follows from the analysis of first forecasting model with the increase of the patient's BMI, the risk of low patient survival rate statistically and significantly (p = 0.03) decreases, OR = 0.89 (95% CI 0.80-0.99) for each kg/m2 index value. The risk of low patient survival rate also decreases (p = 0.02) if he has a squamous cell carcinoma, OR = 0.36 (95% CI 0.15-0.88) compared with other histological forms of tumor. The connection between the risk of low patient survival rate and the volume of surgical intervention was discovered (p = 0.01), OR = 3.19 (95% CI 1.29-7.86) for patients who underwent a pulmonectomy compared with patients who underwent an upper bilobectomy. As follows from the analysis of second forecasting model with the increase of the patient's BMI the risk of low patient survival rate statistically and significantly (p = 0.01) decreases; OR = 0.84 (95% CI 0.74-0.96) for each kg/m2 index value. It is found that with the increasing level of the EGFR expression in the primary tumor, the risk of low patient survival rate statistically and significantly increases (p = 0.04), OR = 1.39 (95% CI 1.01-1.90) for each graduation rate. The risk of low patient survival rate also increases when conducting the lymph dissection in the volume D0-D1.
In the past decades a lot of investigations were focused on searching for more accurate markers of lung cancer progression. Researchers indicate that molecular markers may be useful in forecasting of treatment outcome and overall survival rate in patients with non-small cell lung cancer. The aim of our research was to create a forecasting model in order to identify patients with stage I-II of non-small cell lung cancer and dismal prognosis. Our research covered 254 patients with the early stage of non-small cell lung cancer who underwent a cure from June 2008 till December 2012 in the Department of Thoracic Surgery of Zaporizhzhia Regional Clinical Oncologic Dispensary. Surgery was performed for all patients. Adjuvant chemotherapy was performed for 101 patients. In order to carry out multivariate Cox-regression analysis, STATISTICA 6.0 (StatSoft Inc.) program was used. The most significant from 39 variables were selected (tumor size, histological form of tumor, volume of surgical intervention, volume of conducted lymph node dissection, Ki-67 expression, EGFR expression, E-cadherin expression). We propose the computer system which can forecast survival rate in patients with the early stage of non-small cell lung cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.