Off-target gene silencing can present a notable challenge in the interpretation of data from large-scale RNA interference (RNAi) screens. We performed a detailed analysis of off-targeted genes identified by expression profiling of human cells transfected with small interfering RNA (siRNA). Contrary to common assumption, analysis of the subsequent off-target gene database showed that overall identity makes little or no contribution to determining whether the expression of a particular gene will be affected by a given siRNA, except for near-perfect matches. Instead, off-targeting is associated with the presence of one or more perfect 3' untranslated region (UTR) matches with the hexamer or heptamer seed region (positions 2-7 or 2-8) of the antisense strand of the siRNA. These findings have strong implications for future siRNA design and the application of RNAi in high-throughput screening and therapeutic development.
Although recent microarray studies have provided evidence of RNA interference (RNAi)-mediated off-target gene modulation, little is known about whether these changes induce observable phenotypic outcomes. Here we show that a fraction of randomly selected small inhibitory RNAs (siRNAs) can induce changes in cell viability in a target-independent fashion. The observed toxicity requires an intact RNAi pathway and can be eliminated by the addition of chemical modifications that reduce off-target effects. Furthermore, an analysis of toxic and nontoxic duplexes identifies a strong correlation between the toxicity and the presence of a 4-base-pair motif (UGGC) in the RISC-entering strand of toxic siRNA. This article provides further evidence of siRNA-induced off-target effects generating a measurable phenotype and also provides an example of how such undesirable phenotypes can be mitigated by addition of chemical modifications to the siRNA.
Regeneration of myelin is mediated by oligodendrocyte progenitor cells-an abundant stem cell population in the central nervous system (CNS) and the principal source of new myelinating oligodendrocytes. Loss of myelin-producing oligodendrocytes in the CNS underlies a number of neurological diseases, including multiple sclerosis and diverse genetic diseases. High-throughput chemical screening approaches have been used to identify small molecules that stimulate the formation of oligodendrocytes from oligodendrocyte progenitor cells and functionally enhance remyelination in vivo. Here we show that a wide range of these pro-myelinating small molecules function not through their canonical targets but by directly inhibiting CYP51, TM7SF2, or EBP, a narrow range of enzymes within the cholesterol biosynthesis pathway. Subsequent accumulation of the 8,9-unsaturated sterol substrates of these enzymes is a key mechanistic node that promotes oligodendrocyte formation, as 8,9-unsaturated sterols are effective when supplied to oligodendrocyte progenitor cells in purified form whereas analogous sterols that lack this structural feature have no effect. Collectively, our results define a unifying sterol-based mechanism of action for most known small-molecule enhancers of oligodendrocyte formation and highlight specific targets to propel the development of optimal remyelinating therapeutics.
Long (27-29-bp dsRNA) Dicer-dependent substrates have been identified as potent mediators of RNAi-induced gene knockdown in HEK293 and HeLa cells. As the lengths of these molecules are reported to be below the threshold generally regarded as necessary for induction of the mammalian interferon (IFN) response, these long siRNA are being considered as RNAi substrates in both research and therapeutic settings. In this report, we demonstrate that >23-bp dsRNA can influence cell viability and induce a potent IFN response (highlighted by a strong up-regulation of the dsRNA receptor, Toll-like receptor 3) in a cell typespecific manner. This finding suggests that the length threshold for siRNA induction of the IFN response is not fixed but instead varies significantly among different cell types. Given the diversity of cell types that comprise whole organisms, these findings suggest great care should be taken when considering length variations of dsRNA molecules for RNAi experimentation, especially in therapeutic applications.
Pairing between the hexamer seed region of a small interfering RNA (siRNA) guide strand (nucleotides 2-7) and complementary sequences in the 39 UTR of mature transcripts has been implicated as an important element in off-target gene regulation and false positive phenotypes. To better understand the association between seed sequences and off-target profiles we performed an analysis of all possible (4096) hexamers and identified a nonuniform distribution of hexamer frequencies across the 39 UTR transcriptome. Subsequent microarray analysis of cells transfected with siRNAs having seeds with low, medium, or high seed complement frequencies (SCFs) revealed that duplexes with low SCFs generally induced fewer off-targets and off-target phenotypes than molecules with more abundant 39 UTR complements. These findings provide the first experimentally validated strategy for designing siRNAs with enhanced specificity and allow for more accurate interpretation of high throughput screening data generated with existing siRNA/shRNA collections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.