The paper deals with damages of transport constructions made of corrugated metal structures in the body of a railway track or a road during their operation. A constructive variant to restore the bearing capacity of structures was developed, which consists of installing an annular stiffening rib into the concave part of the corrugated metal profile. The main advantage of this method compared to the double corrugating method is the possibility of performing the reinforcement works during structure operation without interrupting the movement of transport vesicles. The study has proved that the reinforcement method significantly increases the carrying capacity of corrugated metal structures. A numerical finite element model was developed to determine the stress-strain state of structures made of corrugated metal structures reinforced with round stiffening ribs. The soil pressure on the corrugated shell in the model is taken into account with the application of radial and axial forces on the outer surface of the shell. It was determined that the most appropriate location of the ribs is in the centre of the building, where the reinforcement area corresponds to the width of the road or railway line. The advantage of this approach is the ability to more efficiently distribute the reinforcement material by selecting the ribs in the most loaded sections of corrugated metal structures.
The technology of renewal of metal corrugated structures allows efficient and economical reconstruction of existing reinforced concrete structures by the method of encapsulation. However, such structures can be exposed to adverse temperature effects that in combination with traffic loadings could influence the operational reliability of the structures. This article deals with the method of evaluation of the stress-strain state of a three-layer cylindrical structure. The technique is based on the thermo-elasticity theory. The study is performed in two steps: determining the temperature field of a structure, and then calculating the temperature stresses and deformations. As a result of calculations, it was established that the level of temperature field and stresses in a three-layer structure caused by the maximum and minimum ambient temperatures can reach a significant level.
The object of this study is a reinforced three-layer transport pipe, which is subjected to the joint action of ambient temperature and static loading of the road subgrade soil.
The analytical model for assessing the stressed-strained state of reinforced three-layer pipes, under the combined action of temperature and static loads, has been improved using the theory of elasticity.
The stressed-strained state of the reinforced pipe was assessed taking into account the values of the joint action of temperature and loads from vehicles, the physical and mechanical parameters of structural materials, and the geometric parameters of the pipe.
As a result of the calculation of the reinforced multilayer pipe, it was found that the maximum movements that occur on the outside of the defective pipe are 0.64 mm, the metal pipe – 0.75 mm, and in the concrete mortar (fine-grained concrete) – 0.69 mm.
It was established that under the combined action of ambient temperature and static loads from the road subgrade soil, ring stresses are maximum. They are 151 MPa. Axial stresses are also high – 141 MPa. At the same time, the maximum radial stresses are the smallest – 37.4 MPa.
It has been established that a small difference in displacements occurs on the contact of structural materials of the reinforced pipe. However, the magnitude of the stresses is high. The maximum difference in ring stresses was 73 MPa, while the difference in radial and axial stresses was up to 1.0 MPa.
It has been established that to restore the bearing capacity of damaged reinforced concrete pipes, it is possible to use the repair technology by the method of "sleeving". It involves pulling a metal pipe into the middle of the layer damaged with concrete mortar remaining between the concrete defective and the new metal pipes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.