Liu, X., Burras, C. L., Kravchenko, Y. S., Duran, A., Huffman, T., Morras, H., Studdert, G., Zhang, X., Cruse, R. M. and Yuan, X. 2012. Overview of Mollisols in the world: Distribution, land use and management. Can. J. Soil Sci. 92: 383–402. Mollisols – a.k.a., Black Soils or Prairie Soils – make up about 916 million ha, which is 7% of the world's ice-free land surface. Their distribution strongly correlates with native prairie ecosystems, but is not limited to them. They are most prevalent in the mid-latitudes of North America, Eurasia, and South America. In North America, they cover 200 million ha of the United States, more than 40 million ha of Canada and 50 million ha of Mexico. Across Eurasia they cover around 450 million ha, extending from the western 148 million ha in southern Russia and 34 million ha in Ukraine to the eastern 35 million ha in northeast China. They are common to South America's Argentina and Uruguay, covering about 89 million and 13 million ha, respectively. Mollisols are often recognized as inherently productive and fertile soils. They are extensively and intensively farmed, and increasingly dedicated to cereals production, which needs significant inputs of fertilizers and tillage. Mollisols are also important soils in pasture, range and forage systems. Thus, it is not surprising that these soils are prone to soil erosion, dehumification (loss of stable aggregates and organic matter) and are suffering from anthropogenic soil acidity. Therefore, soil scientists from all of the world's Mollisols regions are concerned about the sustainability of some of current trends in land use and agricultural practices. These same scientists recommend increasing the acreage under minimum or restricted tillage, returning plant residues and adding organic amendments such as animal manure to maintain or increase soil organic matter content, and more systematic use of chemical amendments such as agricultural limestone to replenish soil calcium reserves.
Kravchenko, Y., Rogovska, N., Petrenko, L., Zhang, X., Song, C. and Chen, Y. 2012. Quality and dynamics of soil organic matter in a typical Chernozem of Ukraine under different long-term tillage systems. Can. J. Soil Sci. 92: 429–438. Tillage has been reported to induce changes in soil organic matter (SOM) concentrations and quality. Conversion of plow-tillage to minimum till and no-till (NT) farming enhances the SOM pool. Enrichment of the SOM pool is essential for maintaining fertility of Chernozems, advancing food security, and improving the environment. The main objective of this study was to examine the effect of different tillage systems on the SOM concentration, its quality and dynamics including CO2 assimilation by heterotrophic bacteria and humus characteristics – the carbon (C) concentration in humic substances and the labile soil organic C fraction (SOCL) extracted with 0.1 N NaOH – as well as the molecular masses, spectroscopic parameters and physiological effects of humic acids on germinating pea (Pisum sativum L.) seeds. Our study was conducted on a long-term experimental site on a Haplick Chernozem in the Poltava region of Ukraine over a 10-yr period from 1996 to 2006. Results indicate that conversion from conventional to reduced soil tillage systems increased SOM concentrations in 0- to 10-cm soil layer and led to the accumulation of C in fulvic acids and humins. No significant differences in SOM storage in the 0- to 100-cm layer were observed among tillage systems. However, reduced tillage systems had a higher proportion of SOCL, a lower ratio of C in humic acids/C in fulvic acids and more humic acids with molecular masses from 110 to 2000 kDa. Our study demonstrated that the quality and dynamics of SOM are closely related to soil tillage practices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.