For a wide class of saturated weakly branch groups, including the (first) Grigorchuk group and the Gupta-Sidki group, we prove that the Reidemeister number of any automorphism is infinite.
We study natural linear representations of self-similar groups over finite fields. In particular, we show that if the group is generated by a finite automaton, then obtained matrices are automatic. This shows a new relation between two separate notions of automaticity: groups generated by automata and automatic sequences. We also show that if the group acts on the tree by p-adic automorphisms, then the corresponding linear representation is a representation by infinite triangular matrices. We relate this observation with the notion of height of an automorphism of a rooted tree due to L. Kaloujnine.
We show that the Lie action of the Kaloujnine group K(p,n) on the vector space (Fp)pn is uniserial. Using some Radon transform techniques we derive a formula for the height of the elements in K(p,n). A generalization of the Kaloujnine groups is introduced by considering automorphisms of a spherically homogeneous tree. We observe that uniseriality fails to hold for these groups and determine their lower central series; finally we discuss in detail Kaloujnine's description of the characteristic subgroups in terms of the (normal) "parallelotopic" subgroups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.