Local drug delivery systems are an effective approach in the treatment of purulent–septic inflammation of bone tissue. Chemically bonded multiphase ceramics based on calcium-deficient carbonate-substituted hydroxyapatite combine resorbability, osteoconductivity, and the possibility of volumetric incorporation of antibiotics. Macroporosity is regulated by the concentration of polyethylene glycol granules introduced into the initial powder composition, followed by their extraction. The selected conditions for the consolidation of the ceramic matrix and the extraction of PEG granules retain the activity of vancomycin, which is confirmed by the results of microbiological studies. The concentration of vancomycin and the porosity affect the local concentration and release of the antibiotic. The incorporation method provides a prolonged release of the antibiotic for up to 31 days. In vivo experiments with bone implantation have shown that chemically bound macroporous ceramics with incorporated vancomycin are a therapeutically effective carrier of the substance during the healing of bone defects in conditions of surrounding purulent–septic inflammation, and can be considered as a carrier for local antibacterial therapy, at the site of implantation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.