Combining multiple partitions into single ensemble clustering solution is a prominent way to improve accuracy and stability of clustering solutions. One of the major problems in constructing clustering ensembles is high computational complexity of the common methods. In this paper two computationally efficient methods of constructing ensembles of nonparametric clustering algorithms are introduced. They are based on the use of co-association matrix and subclusters. The results of experiments on synthetic and real datasets confirm their effectiveness and show the stability of the obtained solutions. The performance of the proposed methods allows to process large images including multispectral satellite data.
An effective method of training set extension for aerospace images classification is proposed. The method is based on mean shift procedure with respect to spatial information. It allows considering the unlabeled data structure. The results of experimental study using the Salinas hyperspectral image are presented, proving the effectiveness of the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.