Glial cell-mediated potassium and glutamate homeostases play important roles in the regulation of neuronal excitability. Diminished potassium and glutamate buffering capabilities of astrocytes result in hyperexcitability of neurons and abnormal synaptic transmission. The role of the different K+ channels in maintaining the membrane potential and buffering capabilities of cortical astrocytes has not yet been definitively determined due to the lack of specific K+ channel blockers. The purpose of the present study was to assess the role of the inward-rectifying K+ channel subunit Kir4.1 on potassium fluxes, glutamate uptake and membrane potential in cultured rat cortical astrocytes using RNAi, whole-cell patch clamp and a colorimetric assay. The membrane potentials of control cortical astrocytes had a bimodal distribution with peaks at -68 and -41 mV. This distribution became unimodal after knockdown of Kir4.1, with the mean membrane potential being shifted in the depolarizing direction (peak at -45 mV). The ability of Kir4.1-suppressed cells to mediate transmembrane potassium flow, as measured by the current response to voltage ramps or sequential application of different extracellular [K+], was dramatically impaired. In addition, glutamate uptake was inhibited by knock-down of Kir4.1-containing channels by RNA interference as well as by blockade of Kir channels with barium (100 microM). Together, these data indicate that Kir4.1 channels are primarily responsible for significant hyperpolarization of cortical astrocytes and are likely to play a major role in potassium buffering. Significant inhibition of glutamate clearance in astrocytes with knock-down of Kir4.1 highlights the role of membrane hyperpolarization in this process.
Spermine (SPM) and spermidine (SPD), endogenous polyamines (PA) with the ability to modulate various ion channels and receptors in the brain, exert neuroprotective, antidepressant, antioxidant and other effects in vivo such as increasing longevity. These PA are preferably accumulated in astrocytes, and we hypothesized that SPM increases glial intercellular communication by interacting with glial gap junctions. Results obtained in situ, using Lucifer yellow propagation in the astrocytic syncitium of 21–25 day old rat CA1 hippocampal slices, showed reduced coupling when astrocytes were dialyzed with standard intracellular solutions (ICS) without SPM. However, there was a robust increase in the spreading of Lucifer yellow via gap junctions to neighboring astrocytes when the cells were patched with ICS containing 1 mM SPM; a physiological concentration in glia. Lucifer yellow propagation was inhibited by gap junction blockers. Our findings show that the glial syncitium propagates SPM via gap junctions and further suggest a new role of polyamines in the regulation of the astroglial network in both normal and pathological conditions.
Summary Purpose KCNJ10 encodes subunits of inward rectifying potassium (Kir) channel Kir4.1 found predominantly in glial cells within the brain. Genetic inactivation of these channels in glia impairs extracellular K+ and glutamate clearance and produces a seizure phenotype. In both mice and humans, polymorphisms and mutations in the KCNJ10 gene have been associated with seizure susceptibility. The purpose of the present study was to determine whether there are differences in Kir channel activity and potassium and glutamate buffering capabilities between astrocytes from seizure resistant C57BL/6 (B6) and seizure susceptible DBA/2 (D2) mice that are consistent with an altered K+ channel activity as a result of genetic polymorphism of KCNJ10. Methods Using cultured astrocytes and hippocampal brain slices together with whole-cell patch-clamp, we determined the electrophysiological properties, particularly K+ conductances, of B6 and D2 mouse astrocytes. Using a colorimetric assay, we determined glutamate clearance capacity by B6 and D2 astrocytes. Results Barium-sensitive Kir currents elicited from B6 astrocytes are substantially larger than those elicited from D2 astrocytes. In addition, potassium and glutamate buffering by D2 cortical astrocytes is impaired, relative to buffering by B6 astrocytes. Discussion In summary, the activity of Kir4.1 channels differs between seizure susceptible D2 and seizure resistant B6 mice. Reduced activity of Kir4.1 channels in astrocytes of D2 mice is associated with deficits in potassium and glutamate buffering. These deficits may, in part, explain the relatively low seizure threshold of D2 mice.
Tandem-pore domain (2P-domain) K+-channels regulate neuronal excitability, but their function in glia, particularly, in retinal glial cells, is unclear. We have previously demonstrated the immunocytochemical localization of the 2P-domain K+ channels TASK-1 and TASK-2 in retinal Müller glial cells of amphibians. The purpose of the present study was to determine whether these channels were functional, by employing whole-cell recording from frog and mammalian (guinea pig, rat and mouse) Müller cells and confocal microscopy to monitor swelling in rat Müller cells. TASK-like immunolabel was localized in these cells. The currents mediated by 2P-domain channels were studied in isolation after blocking Kir, K(A), K(D), and BK channels. The remaining cell conductance was mostly outward and was depressed by acid pH, bupivacaine, methanandamide, quinine, and clofilium, and activated by alkaline pH in a manner consistent with that described for TASK channels. Arachidonic acid (an activator of TREK channels) had no effect on this conductance. Blockade of the conductance with bupivacaine depolarized the Müller cell membrane potential by about 50%. In slices of the rat retina, adenosine inhibited osmotic glial cell swelling via activation of A1 receptors and subsequent opening of 2P-domain K+ channels. The swelling was strongly increased by clofilium and quinine (inhibitors of 2P-domain K+ channels). These data suggest that 2P-domain K+ channels are involved in homeostasis of glial cell volume, in activity-dependent spatial K+ buffering and may play a role in maintenance of a hyperpolarized membrane potential especially in conditions where Kir channels are blocked or downregulated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.