Purpose. Statistical information for the period from 2016 to 2021 was used to analyze seismic activity. Objective. The aim of the study is to identify the relationship between changes in water level and local seismic activity in the region. Using HPP and Psing filtering, the hypocenters of earthquakes within a radius of 30 km from the seismic station with the NDNU index were selected, and using geographic information technology tools, the hypocenters of earthquakes were compared with the geological structure of the region. Methodology. Statistical information for the period from 2016 to 2021 was used to analyze seismic activity. Using filtering, the hypocenters of earthquakes within a radius of 30 km from the seismic station with the NDNU index were selected, and using geographic information technology tools, the hypocenters of earthquakes were compared with the geological structure of the region. Results. The studies revealed a correlation between seismic events and water level fluctuations in the reservoir. The paper also established the density of episodes concentrated in the reservoir operation area, as well as the magnitude and shallow depth, indicated the probability of activation of faults located in geological layers close to the ground surface. The stresses in the soils were assessed. Using the Coulomb-Mohr theory, the ultimate stresses leading to the destruction of structural ties were calculated approximately, and the optimal modes of operation of the reservoir were determined. Originality. The research in the article allows us to more accurately assess the effect of the stress gradient in the soils on the background seismicity in the reservoir operation area. Practical significance. The practical significance of this study is understanding the effect of the stress gradient on induction earthquakes. The described method, which is based on the principles of Coulomb's law and Mohr's theory, allows us to remotely study the behavior of the material under different loading conditions. This study and the development of a geomechanical model helps to better understand and predict earthquake behavior and determine safe loading zones. This has practical implications for the design and construction of structures, as well as for risk assessment and appropriate safety measures.
Purpose. The aim of the research is mathematical analysis and forecasting of dispersive soils behaviour based on the study of inclinometric observations data in the area of the natural-technical system of the Dnister PSPP. Methodology. The research methodology is based on mathematical analysis and modelling of processes occurring in the mountain massif on which the Dnister PSPP is located, using the finite element method. Results. The paper presents an analysis of the results of geotechnical monitoring of the behaviour of dispersive soils, implemented on the basis of inclinometric measurements on the territory of the Dnister PSPP. Quantitative parameters of horizontal displacement distribution in inclinometric wells are established. They made it possible to detect negative dynamics in the geological horizons N1-2ap and N1p+v, which is apparently caused by technogenic load caused by the Dnister upper reservoir. The behaviour of dispersive soils under the influence of natural and technogenic loads has been modelled. Based on the simulation results, the change of the sign of deformations under the influence of additional load, which can be the filling of the Dnister upper reservoir, is confirmed. Obviously, the use of this method alone does not allow full detecting and tracking modern geological, seismic and geodynamic processes. A combination and detailed analysis of different monitoring methods (geophysical, geodetic, parametric, vibrometric, hydrogeological, temperature, visual-instrumental and others), as well as modelling the behaviour of the object under the influence of natural and technogenic factors is optimal. Such simulations could be used in the design of other objects of this type, so this is a promising area for further research. Originality. For the first time, a mathematical analysis and forecasting of the behaviour of dispersed soils in the area of the natural and technical system of the Dnister PSPP was conducted on the basis of studying the data of inclinometric observations. Practical significance. The proposed technique can be used in the design of other objects of this type, as modelling the behaviour of the object under the influence of natural and technogenic factors makes it possible to assess possible risks and prevent them.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.