Exciton-polaritons are hybrid light-matter particles that form upon strong coupling of an excitonic transition to a cavity mode. As bosons, polaritons can form condensates with coherent laser-like emission. For organic materials, optically pumped condensation was achieved at room temperature but electrically pumped condensation remains elusive due to insufficient polariton densities. Here we combine the outstanding optical and electronic properties of purified, solution-processed semiconducting (6,5) single-walled carbon nanotubes (SWCNTs) in a microcavity-integrated light-emitting field-effect transistor to realize efficient electrical pumping of exciton-polaritons at room temperature with high current densities (>10 kA cm) and tunability in the near-infrared (1,060 nm to 1,530 nm). We demonstrate thermalization of SWCNT polaritons, exciton-polariton pumping rates ∼10 times higher than in current organic polariton devices, direct control over the coupling strength (Rabi splitting) via the applied gate voltage, and a tenfold enhancement of polaritonic over excitonic emission. This powerful material-device combination paves the way to carbon-based polariton emitters and possibly lasers.
Near-infrared emission from semiconducting single-walled carbon nanotubes (SWNTs) usually results from radiative relaxation of excitons. By binding an additional electron or hole through chemical or electrochemical doping, charged three-body excitons, so-called trions, are created that emit light at lower energies. The energy difference is large enough to observe weak trion photoluminescence from doped SWNTs even at room temperature. Here, we demonstrate strong trion electroluminescence from electrolyte-gated, light-emitting SWNT transistors with three different polymer-sorted carbon nanotube species, namely, (6,5), (7,5) and (10,5). The red-shifted trion emission is equal to or even stronger than the exciton emission, which is attributed to the high charge carrier density in the transistor channel. The possibility of trions as a radiative relaxation pathway for triplets and dark excitons that are formed in large numbers by electron-hole recombination is discussed. The ratio of trion to exciton emission can be tuned by the applied voltages, enabling voltage-controlled near-infrared light sources with narrow line widths that are solution-processable and operate at low voltages (<3 V).
Exciton-polaritons form upon strong coupling between electronic excitations of a material and photonic states of a surrounding microcavity. In organic semiconductors the special nature of excited states leads to particularly strong coupling and facilitates condensation of exciton-polaritons at room temperature, which may lead to electrically pumped organic polariton lasers. However, charge carrier mobility and photo-stability in currently used materials is limited and exciton-polariton emission so far has been restricted to visible wavelengths. Here, we demonstrate strong light-matter coupling in the near infrared using single-walled carbon nanotubes (SWCNTs) in a polymer matrix and a planar metal-clad cavity. By exploiting the exceptional oscillator strength and sharp excitonic transition of (6,5) SWCNTs, we achieve large Rabi splitting (>110 meV), efficient polariton relaxation and narrow band emission (<15 meV). Given their high charge carrier mobility and excellent photostability, SWCNTs represent a promising new avenue towards practical exciton-polariton devices operating at telecommunication wavelengths.
The functionalization of semiconducting single-walled carbon nanotubes (SWNTs) with sp 3 defects that act as luminescent exciton traps is a powerful means to enhance their photoluminescence quantum yield (PLQY) and to add optical properties. However, the synthetic methods employed to introduce these defects are currently limited to aqueous dispersions of surfactant-coated SWNTs, often with short tube lengths, residual metallic nanotubes, and poor film-formation properties. In contrast to that, dispersions of polymer-wrapped SWNTs in organic solvents feature unrivaled purity, higher PLQY, and are easily processed into thin films for device applications. Here, we introduce a simple and scalable phase-transfer method to solubilize diazonium salts in organic nonhalogenated solvents for the controlled reaction with polymer-wrapped SWNTs to create luminescent aryl defects. Absolute PLQY measurements are applied to reliably quantify the defect-induced brightening. The optimization of defect density and trap depth results in PLQYs of up to 4% with 90% of photons emitted through the defect channel. We further reveal the strong impact of initial SWNT quality and length on the relative brightening by sp 3 defects. The efficient and simple production of large quantities of defect-tailored polymer-sorted SWNTs enables aerosol-jet printing and spin-coating of thin films with bright and nearly reabsorption-free defect emission, which are desired for carbon nanotube-based near-infrared light-emitting devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.