A loss-of-function variant in HSD17B13 was associated with a reduced risk of chronic liver disease and of progression from steatosis to steatohepatitis. (Funded by Regeneron Pharmaceuticals and others.).
Pancreatic islet cells are critical for maintaining normal blood glucose levels, and their malfunction underlies diabetes development and progression. We used single-cell RNA sequencing to determine the transcriptomes of 1,492 human pancreatic α, β, δ, and PP cells from non-diabetic and type 2 diabetes organ donors. We identified cell-type-specific genes and pathways as well as 245 genes with disturbed expression in type 2 diabetes. Importantly, 92% of the genes have not previously been associated with islet cell function or growth. Comparison of gene profiles in mouse and human α and β cells revealed species-specific expression. All data are available for online browsing and download and will hopefully serve as a resource for the islet research community.
Proinsulin is a misfolding-prone protein, making its biosynthesis in the endoplasmic reticulum (ER) a stressful event. Pancreatic β-cells overcome ER stress by activating the unfolded protein response (UPR) and reducing insulin production. This suggests that β-cells transition between periods of high insulin biosynthesis and UPR-mediated recovery from cellular stress. We now report the pseudotime ordering of single β-cells from humans without diabetes detected by large-scale RNA sequencing. We identified major states with ) low UPR and low insulin gene expression,) low UPR and high insulin gene expression, or ) high UPR and low insulin gene expression. The latter state was enriched for proliferating cells. Stressed human β-cells do not dedifferentiate and show little propensity for apoptosis. These data suggest that human β-cells transition between states with high rates of biosynthesis to fulfill the body's insulin requirements to maintain normal blood glucose levels and UPR-mediated recovery from ER stress due to high insulin production.
Glucagon supports glucose homeostasis by stimulating hepatic gluconeogenesis, in part by promoting the uptake and conversion of amino acids into gluconeogenic precursors. Genetic disruption or pharmacologic inhibition of glucagon signaling results in elevated plasma amino acids and compensatory glucagon hypersecretion involving expansion of pancreatic α cell mass. Recent findings indicate that hyperaminoacidemia triggers pancreatic α cell proliferation via an mTOR-dependent pathway. We confirm and extend these findings by demonstrating that glucagon pathway blockade selectively increases expression of the sodium-coupled neutral amino acid transporter Slc38a5 in a subset of highly proliferative α cells and that Slc38a5 controls the pancreatic response to glucagon pathway blockade; most notably, mice deficient in Slc38a5 exhibit markedly decreased α cell hyperplasia to glucagon pathway blockade-induced hyperaminoacidemia. These results show that Slc38a5 is a key component of the feedback circuit between glucagon receptor signaling in the liver and amino-acid-dependent regulation of pancreatic α cell mass in mice.
SUMMARY
Yi et al. (2013) recently reported that angiopoietin-like protein 8 (ANGPTL8) was the long-sought “betatrophin” that could control pancreatic beta cell proliferation. However, studies of Angptl8−/− mice revealed profound reduction of triglyceride levels, but no abnormalities in glucose homeostasis (Wang et al. 2013). We now report that Angptl8−/− mice undergo entirely normal beta cell expansion in response to insulin resistance resulting from either a high fat diet, or from the administration of the insulin receptor antagonist S961. Furthermore, overexpression of ANGPTL8 in livers of mice doubles plasma triglyceride levels, but does not alter beta cell expansion nor glucose metabolism. These data indicate ANGPTL8 does not play a role in controlling beta cell growth, nor can it be given to induce such expansion. The findings that plasma triglyceride levels are reduced by Angptl8 deletion and increased following ANGPTL8 overexpression support the possibility that inhibition of ANGPTL8 represents a therapeutic strategy for hypertriglyceridemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.