Data transmission rates in optical communication systems are approaching the limits of conventional multiplexing methods. Orbital angular momentum (OAM) in optical vortex beams offers a new degree of freedom and the potential to increase the capacity of free-space optical communication systems, with OAM beams acting as information carriers for OAM division multiplexing (OAM-DM). We demonstrate independent collinear OAM channel generation, transmission and simultaneous detection using Dammann optical vortex gratings (DOVGs). We achieve 80/160 Tbit s 21 capacity with uniform power distributions along all channels, with 1600 individually modulated quadrature phase-shift keying (QPSK)/16-QAM data channels multiplexed by 10 OAM states, 80 wavelengths and two polarizations. DOVG-enabled OAM multiplexing technology removes the bottleneck of massive OAM state parallel detection and offers an opportunity to raise optical communication systems capacity to Pbit s 21 level.
Nanopore emerged as a powerful single-molecule technique over the past two decades, and has shown applications in the stochastic sensing and biophysical studies of individual molecules. Here, we report a versatile strategy for nanopore sensing by employing the combination of aptamers and host-guest interactions. An aptamer is first hybridized with a DNA probe which is modified with a ferrocene⊂cucurbit[7]uril complex. The presence of analytes causes the aptamer-probe duplex to unwind and release the DNA probe which can quantitatively produce signature current events when translocated through an α-hemolysin nanopore. The integrated use of magnetic beads can further lower the detection limit by approximately two to three orders of magnitude. Because aptamers have shown robust binding affinities with a wide variety of target molecules, our proposed strategy should be universally applicable for sensing different types of analytes with nanopore sensors.
Background: Emerging evidences indicate that post-transcriptional regulation by microRNAs is critical in allergic rhinitis (AR) pathogenesis. MircroRNA-133b (miR-133b) was recently suggested as a potential predictor of AR. However, the in vivo effect of miR-133b on AR is unclear. Methods: AR model was established in BALB/c mice by intraperitoneal sensitization and intranasal challenge with ovalbumin (OVA). MiR-133b agomir was then intranasally administrated to mice after OVA challenge for another 7 days. The symptom of nasal rubbing and sneezing were recorded after the last OVA challenge. Nasal mucosa tissues and serum were collected. MiR-133b expression, serum OVA-specific immunoglobulin E (IgE) concentration, proinflammatory cytokines (TNF-α, IL-4, IL-5, IL-10 and IFN-γ) levels, and Nlrp3 inflammasome activation were measured by RT-PCR, ELISA, western blotting or immunohistochemistry, respectively. Histopathologic changes were evaluated using hematoxylin and eosin and Sirius red staining. The luciferase activity and protein expression of Nlrp3 were also determined. Results: MiR-133b expression was significantly decreased in nasal mucosa of AR mice, which was restored by nasal administration with miR-133b agomir. Upregulation of miR-133b markedly reduced the concentration of OVA-specific IgE, the frequencies of nasal rubbing and sneezing, and the levels of cytokines (TNF-α, IL-4, IL-5 and IFN-γ). Levels of IL-4, IL-5, IL-10 and IFN-γ produced by cervical lymph node cells were significantly lowered in miR-133b agomir-treated mice. Moreover, miR-133b also appeared to strongly attenuate pathological alterations and eosinophils and mast cells infiltration in nasal mucosa. Notably, we demonstrated for the first time that miR-133b negatively regulated Nlrp3 expression through binding with the 3’ untranslated region of Nlrp3. Consequently, infection of miR-133b in nasal mucosa remarkably suppressed the Nlrp3 inflammasome activation, as evidenced by reduced Nlrp3, Caspase-1, ASC, IL-18 and IL-1 expressions. Conclusion: MiR-133b alleviates allergic symptom in AR mice by inhibition of Nlrp3 inflammasome-meditated inflammation. These findings provide us an insight into the potential role of miR-133b in relation to AR treatment.
The past nine months witnessed COVID-19's fast-spreading at the global level. Limited by medical resources shortage and uneven facilities distribution, online help-seeking becomes an essential approach to cope with public health emergencies for many ordinaries. This study explores the driving forces behind the retransmission of online help-seeking posts. We built an analytical framework that emphasized content characteristics, including information completeness, proximity, support seeking type, disease severity, and emotion of helpseeking messages. A quantitative content analysis was conducted with a probability sample consisting of 727 posts. The results illustrate the importance of individual information completeness, high proximity, instrumental support seeking. This study also demonstrates slight inconformity with the severity principle but stresses the power of anger in help-seeking messages dissemination. As one of the first online help-seeking diffusion analyses in the COVID-19 period, our research provides a reference for constructing compelling and effective help-seeking posts during a particular period. It also reveals further possibilities for harnessing social media's power to promote reciprocal and cooperative actions as a response to this deepening global concern.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.