Adenosine deamination is one of the most prevalent post-transcriptional modifications in mRNA and is catalyzed by ADAR1 and ADAR2 in humans. ADAR1 and ADAR2 have different substrate selectivity, which is believed to mainly originate from the proteins' deaminase domains (hADAR1d and hADAR2d, respectively). RNA-seq of the Saccharomyces cerevisiae transcriptome subjected to ADAR-catalyzed RNA editing identified substrates with common secondary structure features preferentially edited by hADAR1d over hADAR2d. The relatively small size and efficient reaction of one of these substrates suggested it could be useful for further study of the hADAR1d reaction. Indeed, a short hairpin stem from the S. cerevisiae HER1 mRNA was efficiently deaminated by hADAR1d and used to generate an hADAR1d-specific fluorescent reporter of editing activity. Using substrates preferred by either hADAR1d or hADAR2d in vitro, we found that a chimeric protein bearing an RNA-binding loop from hADAR2d grafted onto hADAR1d showed ADAR2-like selectivity. Finally, a high-throughput mutagenesis analysis (Sat-FACS-Seq) of conserved residues in an RNA-binding loop of hADAR1d revealed essential amino acids for function, advancing our understanding of RNA recognition by this domain.
Adenosine deamination is one of the most prevalent post-transcriptional modifications in mRNA. In humans, ADAR1 and ADAR2 catalyze this modification and their malfunction correlates with disease. Recently our laboratory reported crystal structures of the human ADAR2 deaminase domain bound to duplex RNA revealing a protein loop that binds the RNA on the 5′ side of the modification site. This 5′ binding loop appears to be one contributor to substrate specificity differences between ADAR family members. In this study, we endeavored to reveal detailed structure–activity relationships in this loop to advance our understanding of RNA recognition by ADAR2. To achieve this goal, we established a high-throughput mutagenesis approach which allows rapid screening of ADAR variants in single yeast cells and provides quantitative evaluation for enzymatic activity. Using this approach, we determined the importance of specific amino acids at 19 different positions in the ADAR2 5′ binding loop and revealed six residues that provide essential structural elements supporting the fold of the loop and key RNA-binding functional groups. This work provided new insight into RNA recognition by ADAR2 and established a new tool for defining structure–function relationships in ADAR reactions.
Adenosine Deaminases acting on RNA (ADARs) are RNA-editing enzymes responsible for the conversion of adenosine to inosine at specific locations in cellular RNAs. ADAR1 and ADAR2 are two members of the family that have been shown to be catalytically active. Earlier we reported a phenotypic screen for the study of human ADAR2 using budding yeast S. cerevisiae as the host system. While this screen has been successfully applied to the study of ADAR2, it failed with ADAR1. Here, we report a new reporter that uses a novel editing substrate and is suitable for the study of ADAR1. We screened plasmid libraries with randomized codons for two important residues in human ADAR1 (G1007 and E1008). The screening results combined with in vitro deamination assays led to the identification of mutants that are more active than the wild type protein. Furthermore, a screen of the ADAR1 E1008X library with a reporter construct bearing an A•G mismatch at the editing site suggests one role for the residue at position 1008 is to sense the identity of the base pairing partner for the editing site adenosine. This work has provided a starting point for future in vitro evolution studies of ADAR1 and led to new insight into ADAR’s editing site selectivity.
N6‐methyladenosine (m6A) is a crucial RNA chemical mark which plays important roles in various biological processes. The development of highly multiplexed, cost‐effective, and easy‐to‐operate methodologies for locus‐specific analysis of m6A is critical for advancing our understanding of the roles of this modification. Herein, we report a method which builds upon the principle of the previously reported SELECT approach by significantly improving its efficiency and coupling it to next generation sequencing technology for high‐throughput validation and detection of m6A modification at selected sites (LEAD‐m6A‐seq). Through probing cDNA extension mediated by Bst DNA polymerase at and near target cellular sites by sequencing, we evaluated m6A modification at these sites, and estimated differential methylation levels (0–84 %) upon in vitro demethylation by the m6A demethylase FTO with high reproducibility. We envision that this strategy can be readily used for testing a greater number of sites with a broad dynamic range and modified to study other RNA modifications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.