MicroRNAs (miRNAs) play critical roles in the development and progression of various cancers, including non-small-cell lung cancer (NSCLC). Studies have suggested that miR-330-5p is involved in the progression of several cancers. However, the role of miR-330-5p in NSCLC remains unclear. We investigated the effect on and mechanism of miR-330-5p in the progression of NSCLC. We found that miR-330-5p was significantly downregulated in NSCLC tissues and cell lines as detected by real-time quantitative polymerase chain reaction (RT-qPCR). The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), bromodeoxyuridine (BrdU), colony formation and cell cycle assays showed that overexpression of miR-330-5p markedly inhibited cell growth. Annexin V-FITC/PI and caspase-3 activity assays showed that overexpression of miR-330-5p significantly promoted cell apoptosis of NSCLC cells. Bioinformatics analysis and dual-luciferase reporter assays confirmed NIN/RPN12 binding protein 1 (NOB1) as a target gene of miR-330-5p. RT-qPCR and Western blot analysis showed that overexpression of miR-330-5p inhibited the expression of NOB1 as well as cyclin D1 and cyclin-dependent kinase 4 in NSCLC cells. Moreover, overexpression of NOB1 markedly reversed the miR‑330-5p-mediated inhibitory effect on NSCLC cell growth. Correlation analysis showed that miR‑330-5p expression was inversely correlated with NOB1 mRNA expression in NSCLC tissues. Taken together, our results indicate that miR-330-5p inhibits NSCLC cell growth through downregulation of NOB1 expression. Our study suggests that miR-330-5p may serve as a potential therapeutic target for the treatment of NSCLC.
DEAD (Asp-Glu-Ala-Asp) box protein 5 (DDX5), a prototypical member of the DEAD/H-box protein family, has been involved in several human malignancies. However, the expression and biological role of DDX5 in esophageal cancer (EC) remain largely unknown. In this study, we examined the role of DDX5 in regulating EC cell proliferation and tumorigenesis and explored its possible molecular mechanism. We found that DDX5 was overexpressed in human EC cell lines. In addition, knockdown of DDX5 significantly inhibited the proliferation of EC cells in vitro and the growth of EC xenografts in vivo. Knockdown of DDX5 also suppressed the migration/invasion and epithelial-to-mesenchymal transition (EMT) phenotype in EC cells. Furthermore, we observed that knockdown of DDX5 inhibited the expression of β-catenin, c-Myc, and cyclin D1 in EC cells. In conclusion, our findings provide the first evidence that siRNA-DDX5 inhibited the proliferation and invasion of EC cells through suppressing the Wnt/β-catenin signaling pathway. Therefore, DDX5 may be a novel potential therapeutic target for the prevention and treatment of EC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.