Topologically ordered materials may serve as a platform for new quantum technologies such as fault-tolerant quantum computers. To fulfil this promise, efficient and general methods are needed to discover and classify new topological phases of matter. We demonstrate that deep neural networks augmented with external memory can use the density profiles formed in quantum walks to efficiently identify properties of a topological phase as well as phase transitions. On a trial topological ordered model, our method's accuracy of topological phase identification reaches 97.4%, and is shown to be robust to noise on the data. Furthermore, we demonstrate that our trained DNN is able to identify topological phases of a perturbed model and predict the corresponding shift of topological phase transitions without learning any information about the perturbations in advance. These results demonstrate that our approach is generally applicable and may be used to identify a variety of quantum topological materials.
Technology advancement has facilitated digital content, such as images, being acquired in large volumes. However, requirement from the privacy or legislation perspective still demands the need for intellectual content protection. In this paper, we propose a deep neural network (DNN) based watermarking method to achieve this goal. Instead of training a neural network for protecting a specific image, we train the network on an image dataset and generalize the trained model to protect distinct test images in a bulk manner. Respective evaluations from both the subjective and objective aspects confirm the generality and practicality of our proposed method. To demonstrate the robustness of this general neural watermarking approach, commonly used attacks are applied to the watermarked images to examine the corresponding extracted watermarks, which still retain sufficient recognizable traits for some occasions. Testing on distinctive dataset shows the satisfying generalization of our proposed method, and practice such as loss function adjustment can cater to the capacity requirement of complicated watermark. We also discuss some traits of the trained model, which incur the vulnerability to JPEG compression attack. However, remedy seeking for this can potentially open a window to understand the underlying working principle of DNN in future work. Considering its performance and economy, it is concluded that subsequent studies that generalize our work on utilizing DNN for intellectual content protection might be a promising research trend.
Differentiable Neural Computer (DNC) has demonstrated remarkable capabilities in solving complex problems. In this paper we propose to stack an enhanced version of differentiable neural computer together to extend its learning capabilities. Firstly, we give an intuitive interpretation of DNC to explain the architectural essence and demonstrate the stacking feasibility by contrasting it with the conventional Recurrent Neural Network (RNN). Secondly, the architecture of stacked DNCs is proposed and modified for electroencephalogram (EEG) data analysis. We substitute the original Long Short-Term Memory (LSTM) network controller by a recurrent convolutional network controller and adjust the memory accessing structures for processing EEG topographic data. Thirdly, the practicability of our proposed model is verified by an open-sourced EEG dataset with the highest average accuracy achieved; then after fine-tuning the parameters, we show the minimal mean error obtained on a proprietary EEG dataset. Finally, by analyzing the behavioral characteristics of the trained stacked DNCs model, we highlight the suitableness and potential of utilizing stacked DNCs in EEG signal processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.