Advantages and diagnostic effectiveness of the two most widely used resequencing approaches, whole exome (WES) and whole genome (WGS) sequencing, are often debated. WES dominated largescale resequencing projects because of lower cost and easier data storage and processing. Rapid development of 3 rd generation sequencing methods and novel exome sequencing kits predicate the need for a robust statistical framework allowing informative and easy performance comparison of the emerging methods. In our study we developed a set of statistical tools to systematically assess coverage of coding regions provided by several modern WES platforms, as well as PCR-free WGS. We identified a substantial problem in most previously published comparisons which did not account for mappability limitations of short reads. Using regression analysis and simple machine learning, as well as several novel metrics of coverage evenness, we analyzed the contribution from the major determinants of CDS coverage. Contrary to a common view, most of the observed bias in modern WES stems from mappability limitations of short reads and exome probe design rather than sequence composition. We also identified the ~ 500 kb region of human exome that could not be effectively characterized using short read technology and should receive special attention during variant analysis. Using our novel metrics of sequencing coverage, we identified main determinants of WES and WGS performance. Overall, our study points out avenues for improvement of enrichment-based methods and development of novel approaches that would maximize variant discovery at optimal cost. Next-generation sequencing (NGS) is rapidly becoming an invaluable tool in human genetics research and clinical diagnostics 1-3. Practical use of NGS methods has dramatically increased with the development of targeted sequencing approaches, such as whole-exome sequencing (WES) or targeted sequencing of gene panels. WES emerged as an efficient alternative to whole-genome sequencing (WGS) due to both lower sequencing cost and simplification of variant analysis and data storage 4. More than 80% of all variants reported in ClinVar, and more than 89% of variants reported to be pathogenic, come from the protein-coding part of the genome; this number increases to 99% when immediate CDS vicinity is included. Even allowing for the sampling bias, there is an overall agreement that most heritable diseases appear to be caused by alterations in the protein-coding regions of the
Over the recent decades, genome-wide association studies (GWAS) have dramatically changed the understanding of human genetics. A recent genetic data release by UK Biobank (UKB) has allowed many researchers worldwide to have comprehensive look into the genetic architecture of thousands of human phenotypes. In this study, we used GWAS summary statistics derived from the UKB cohort to investigate functional mechanisms of pleiotropic effects across the human phenome. We find that highly pleiotropic variants often correspond to broadly expressed genes with ubiquitous functions, such as matrisome components and cell growth regulators; and tend to colocalize with tissue-shared eQTLs. At the same time, signaling pathway components are more prevalent among highly pleiotropic genes compared to regulatory proteins such as transcription factors. our results suggest that proteinlevel pleiotropy mediated by ubiquitously expressed genes is the most prevalent mechanism of pleiotropic genetic effects across the human phenome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.