Microbial capsular antigens are effective vaccines but are chemically and immunologically diverse, resulting in a major barrier to their use against multiple pathogens. A β-(1→6)-linked poly-N-acetyl-D-glucosamine (PNAG) surface capsule is synthesized by four proteins encoded in genetic loci designated intercellular adhesion in Staphylococcus aureus or polyglucosamine in selected Gram-negative bacterial pathogens. We report that many microbial pathogens lacking an identifiable intercellular adhesion or polyglucosamine locus produce PNAG, including Gram-positive, Gram-negative, and fungal pathogens, as well as protozoa, e.g., Trichomonas vaginalis, Plasmodium berghei, and sporozoites and blood-stage forms of Plasmodium falciparum. Natural antibody to PNAG is common in humans and animals and binds primarily to the highly acetylated glycoform of PNAG but is not protective against infection due to lack of deposition of complement opsonins. Polyclonal animal antibody raised to deacetylated glycoforms of PNAG and a fully human IgG1 monoclonal antibody that both bind to native and deacetylated glycoforms of PNAG mediated complement-dependent opsonic or bactericidal killing and protected mice against local and/or systemic infections by Streptococcus pyogenes, Streptococcus pneumoniae, Listeria monocytogenes, Neisseria meningitidis serogroup B, Candida albicans, and P. berghei ANKA, and against colonic pathology in a model of infectious colitis. PNAG is also a capsular polysaccharide for Neisseria gonorrhoeae and nontypable Hemophilus influenzae, and protects cells from environmental stress. Vaccination targeting PNAG could contribute to immunity against serious and diverse prokaryotic and eukaryotic pathogens, and the conserved production of PNAG suggests that it is a critical factor in microbial biology.immunotherapy | infectious diseases | malaria | carbohydrates | animal models
Vaccines for pathogens usually target strain-specific surface antigens or toxins, and rarely is there broad antigenic specificity extending across multiple species. Protective antibodies for bacteria are usually specific for surface or capsular antigens. -(136)-Poly-N-acetyl-D-glucosamine (PNAG) is a surface polysaccharide produced by many pathogens, including Staphylococcus aureus, Escherichia coli, Yersinia pestis, Bordetella pertussis, Acinetobacter baumannii, and others. Protective antibodies to PNAG are elicited when a deacetylated glycoform (deacetylated PNAG [dPNAG]; <30% acetate) is used in conjugate vaccines, whereas highly acetylated PNAG does not induce such antibodies. Chemical derivation of dPNAG from native PNAG is imprecise, so we synthesized both -(136)-D-glucosamine (GlcNH 2 ) and -(136)-D-N-acetylglucosamine (GlcNAc) oligosaccharides with linkers on the reducing termini that could be activated to produce sulfhydryl groups for conjugation to bromoacetyl groups introduced onto carrier proteins. Synthetic 5-mer GlcNH 2 (5GlcNH 2 ) or 9GlcNH 2 conjugated to tetanus toxoid (TT) elicited mouse antibodies that mediated opsonic killing of multiple S. aureus strains, while the antibodies that were produced in response to 5GlcNAc-or 9GlcNAc-TT did not mediate opsonic killing. Rabbit antibodies to 9GlcNH 2 -TT bound to PNAG and dPNAG antigens, mediated killing of S. aureus and E. coli, and protected against S. aureus skin abscesses and lethal E. coli peritonitis.
Derivatives of 5,7-diamino-3,5,7,9-tetradeoxynon-2-ulosonic acids are essential constituents of some bacterial polysaccharides and glycoproteins. In order to establish reliably the configuration of the natural sugars, nine stereoisomeric 5,7-diacetamido-3,5,7,9-tetradeoxynon-2-ulosonic acids were synthesized, including di-N-acetyl-legionaminic and -pseudaminic acids (the D-glycero-D-galacto and L-glycero-L-manno isomers, respectively) and their isomers at C-4, C-5, C-7, and C-8 having the L-glycero-D-galacto, D-glycero-D-talo, L-glycero-D-talo, D-glycero-L-altro, L-glycero-L-altro, D-glycero-L-manno, and L-glycero-L-gluco configurations. Synthesis was performed by condensation of 2,4-diacetamido-2,4,6-trideoxy-L-gulose, -D-mannose, -D-talose, and -L-allose with oxalacetic acid under basic conditions, the reaction of the last two precursors being accompanied by epimerisation at C-2. The 1H and 13C NMR data of the synthetic compounds are discussed. Acetylated methyl esters of the C-7 and C-8 isomeric nonulosonic acids were prepared and used for analysis of the side-chain conformation by NMR spectroscopy.
Oligosaccharides have a variety of versatile biological effects, but unlike peptides and oligonucleotides, investigation of the roles of oligosaccharides is not easy. Since biosynthesis of oligosaccharides does not comply with direct genetic control, their isolation from natural sources and biotechnological preparation are complicated, due to the heterogeneous composition of raw carbohydrates. Oligosaccharide synthesis is needed for the establishment or confirmation of the structure of natural glycocompounds. Also, synthetically prepared, defined oligosaccharides and their derivatives are becoming increasingly important tools for many biological and immunological research projects. The key step of oligosaccharide synthesis involves glycosylation, a reaction that builds glycosidic bonds. Usually, construction of 1,2-trans-bonds is easy, and therefore, this reaction can even be included into automated syntheses. At this time, installation of the 1,2-cis-bond remains simultaneously frustrating and compelling. In our and other laboratories, a strategy of α-selective (1,2-cis) glycosylation, relying on remote anchimeric assistance with acyl groups, is studied. The state of the art in this work is summarized in this review.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.