SummaryA highly multiplexed cytometric imaging approach, termed co-detection by indexing (CODEX), is used here to create multiplexed datasets of normal and lupus (MRL/lpr) murine spleens. CODEX iteratively visualizes antibody binding events using DNA barcodes, fluorescent dNTP analogs, and an in situ polymerization-based indexing procedure. An algorithmic pipeline for single-cell antigen quantification in tightly packed tissues was developed and used to overlay well-known morphological features with de novo characterization of lymphoid tissue architecture at a single-cell and cellular neighborhood levels. We observed an unexpected, profound impact of the cellular neighborhood on the expression of protein receptors on immune cells. By comparing normal murine spleen to spleens from animals with systemic autoimmune disease (MRL/lpr), extensive and previously uncharacterized splenic cell-interaction dynamics in the healthy versus diseased state was observed. The fidelity of multiplexed spatial cytometry demonstrated here allows for quantitative systemic characterization of tissue architecture in normal and clinically aberrant samples.
Summary Antitumoral immunity requires organized, spatially nuanced interactions between components of the immune tumor microenvironment (iTME). Understanding this coordinated behavior in effective versus ineffective tumor control will advance immunotherapies. We re-engineered co-detection by indexing (CODEX) for paraffin-embedded tissue microarrays, enabling simultaneous profiling of 140 tissue regions from 35 advanced-stage colorectal cancer (CRC) patients with 56 protein markers. We identified nine conserved, distinct cellular neighborhoods (CNs)—a collection of components characteristic of the CRC iTME. Enrichment of PD-1 + CD4 + T cells only within a granulocyte CN positively correlated with survival in a high-risk patient subset. Coupling of tumor and immune CNs, fragmentation of T cell and macrophage CNs, and disruption of inter-CN communication was associated with inferior outcomes. This study provides a framework for interrogating how complex biological processes, such as antitumoral immunity, occur through concerted actions of cells and spatial domains.
Highlights d Autoimmunity analyzed by multiplexed DNA-tagged antibody staining (CODEX) d CODEX data reveal pairwise interactions and niches changing with disease d First tier of neighbors significantly impacts marker expression in the index cells d Changes in splenic morphology correlate with shifts in cell frequencies
Emerging evidence points towards an intricate relationship between the pandemic of coronavirus disease 2019 (COVID-19) and diabetes. While pre-existing diabetes is associated with severe COVID-19 , it is unclear if COVID-19 severity is a cause or consequence of diabetes . To mechanistically link COVID-19 to diabetes, we tested whether insulin-producing pancreatic β-cells can be infected by SARS-CoV-2 and cause β-cell depletion. We found that the SARS-CoV-2 receptor, ACE2 and related entry factors (TMPRSS2, NRP1, TRFC) are expressed in β-cells, with selectively high expression of NRP1. We discovered that SARS-CoV-2 infects human pancreatic β-cells in patients who succumbed to COVID-19 and selectively infects human islet β-cells in vitro . We demonstrated SARS-CoV-2 infection attenuates pancreatic insulin levels and secretion, and induces β-cell apoptosis, each rescued by NRP1 inhibition. Phosphoproteomic pathway analysis of infected islets indicates apoptotic β-cell signaling, similar to that observed in Type 1 diabetes (T1D). In summary, our study shows SARS-CoV-2 can directly induce β-cell killing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.