We consider a setup where a distributed set of sensors working cooperatively can estimate an unknown signal of interest, whereas any individual sensor cannot fulfil the task due to lack of necessary information diversity. This paper deals with these kinds of estimation and tracking problems and focuses on a class of simultaneous perturbation stochastic approximation (SPSA)-based consensus algorithms for the cases when the corrupted observations of sensors are transmitted between sensors with communication noise and the communication protocol has to satisfy a prespecified cost constraints on the network topology. Sufficient conditions are introduced to guarantee the stability of estimates obtained in this way, without resorting to commonly used but stringent conventional statistical assumptions about the observation noise such as randomness, independence, and zero mean. We derive an upper bound of the mean-square error of the estimates in the problem of unknown time-varying parameters tracking under unknown-but-bounded observation errors and noisy communication channels. The result is illustrated by a practical application to the multi-sensor multi-target tracking problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.