Abstract. We investigate the time-invariant linear filter (TILF) approach to optimally parameterize the surface metrology of high-quality x-ray optics considered as a result of a stationary uniform random process. The approach is a generalization of autoregressive moving average (ARMA) modeling of one-dimensional slope measurements with x-ray mirrors considered. We show that the suggested TILF approximation has all the advantages of one-sided autoregressive and ARMA modeling, allowing a high degree of confidence when fitting the metrology data with a limited number of parameters. Compared to ARMA modeling, the TILF approximation gains in terms of better fitting accuracy and the absence of the causality limitation. Moreover, the TILF approach can be directly generalized to two-dimensional random fields. With the determined model parameters, the surface topography of prospective beamline optics can be reliably forecast before they are fabricated. These forecast metrology data, containing essential and reliable statistical information about the existing optics which are fabricated by the same vendor and technology, but generally, have different sizes, and slope and height rootmean-square variations, are vitally needed for numerical simulations of the performance of new x-ray beamlines and those under upgrade. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
of surface metrology of state-of-theart x-ray mirrors as a result of stochastic polishing process," Opt. Eng. 55 (7) Abstract. The design and evaluation of the expected performance of optical systems requires sophisticated and reliable information about the surface topography of planned optical elements before they are fabricated. The problem is especially severe in the case of x-ray optics for modern diffraction-limited-electron-ring and free-electron-laser x-ray facilities, as well as x-ray astrophysics missions, such as the X-ray Surveyor under development. Modern x-ray source facilities are reliant upon the availability of optics of unprecedented quality, with surface slope accuracy <0.1 μrad. The unprecedented high angular resolution and throughput of future x-ray space observatories require high-quality optics of 100 m 2 in total area. The uniqueness of the optics and limited number of proficient vendors make the fabrication extremely time-consuming and expensive, mostly due to the limitations in accuracy and measurement rate of metrology used in fabrication. We continue investigating the possibility of improving metrology efficiency via comprehensive statistical treatment of a compact volume of metrology of surface topography, which is considered the result of a stochastic polishing process. We suggest, verify, and discuss an analytical algorithm for identification of an optimal symmetric time-invariant linear filter model with a minimum number of parameters and smallest residual error. If successful, the modeling could provide feedback to deterministic polishing processes, avoiding time-consuming, whole-scale metrology measurements over the entire optical surface with the resolution required to cover the entire desired spatial frequency range. The modeling also allows forecasting of metrology data for optics made by the same vendor and technology. The forecast data are vital for reliable specification for optical fabrication, evaluated from numerical simulation to be exactly adequate for the required system performance, avoiding both over-and underspecification.
Numerical simulations of the performance of new x-ray beamlines and those under upgrade require sophisticated and reliable information about the expected surface slope and height distributions of prospective beamline optics before they are fabricated. Ideally, such information is based on metrology data obtained with existing optics, which are fabricated by the same vendor and technology, but generally, have different sizes, and slope and height rms variations. In a recent work [Opt. Eng. 51(4), 046501, 2012], it has been demonstrated that autoregressive moving average (ARMA) modeling of one-dimensional (1D) slope measurements with x-ray mirrors allows a high degree of confidence when fitting the metrology data with a limited number of parameters. With the parameters of the ARMA model, the surface slope profile of an optic with the desired specification can reliably be forecast. Here, we investigate the time-invariant linear filter (TILF) approach to optimally parameterize surface metrology of high quality x-ray optics thought of as a result of a stationary uniform random process. We show that the TILF approximation has all advantages of one-sided AR and ARMA modeling, but it additionally gains in terms of better fitting accuracy and absence of the causality limitation. Moreover, the suggested TILF approach can be directly generalized to 2D random fields.
of surface metrology of state-of-theart x-ray mirrors as a result of stochastic polishing process," Opt. Eng. 55 (7) Abstract. The design and evaluation of the expected performance of optical systems requires sophisticated and reliable information about the surface topography of planned optical elements before they are fabricated. The problem is especially severe in the case of x-ray optics for modern diffraction-limited-electron-ring and free-electron-laser x-ray facilities, as well as x-ray astrophysics missions, such as the X-ray Surveyor under development. Modern x-ray source facilities are reliant upon the availability of optics of unprecedented quality, with surface slope accuracy <0.1 μrad. The unprecedented high angular resolution and throughput of future x-ray space observatories require high-quality optics of 100 m 2 in total area. The uniqueness of the optics and limited number of proficient vendors make the fabrication extremely time-consuming and expensive, mostly due to the limitations in accuracy and measurement rate of metrology used in fabrication. We continue investigating the possibility of improving metrology efficiency via comprehensive statistical treatment of a compact volume of metrology of surface topography, which is considered the result of a stochastic polishing process. We suggest, verify, and discuss an analytical algorithm for identification of an optimal symmetric time-invariant linear filter model with a minimum number of parameters and smallest residual error. If successful, the modeling could provide feedback to deterministic polishing processes, avoiding time-consuming, whole-scale metrology measurements over the entire optical surface with the resolution required to cover the entire desired spatial frequency range. The modeling also allows forecasting of metrology data for optics made by the same vendor and technology. The forecast data are vital for reliable specification for optical fabrication, evaluated from numerical simulation to be exactly adequate for the required system performance, avoiding both over-and underspecification.
The design and evaluation of the expected performance of new optical systems requires sophisticated and reliable information about the surface topography for planned optical elements before they are fabricated. The problem is especially complex in the case of x-ray optics, particularly for the X-ray Surveyor under development and other missions. Modern x-ray source facilities are reliant upon the availability of optics with unprecedented quality (surface slope accuracy < 0.1μrad). The high angular resolution and throughput of future x-ray space observatories requires hundreds of square meters of high quality optics. The uniqueness of the optics and limited number of proficient vendors makes the fabrication extremely time consuming and expensive, mostly due to the limitations in accuracy and measurement rate of metrology used in fabrication. We discuss improvements in metrology efficiency via comprehensive statistical analysis of a compact volume of metrology data. The data is considered stochastic and a new statistical model called Invertible Time Invariant Linear Filter (InTILF) is developed now for 2D surface profiles to provide compact description of the 2D data additionally to 1D data treated so far. The model captures faint patterns in the data and serves as a quality metric and feedback to polishing processes, avoiding high resolution metrology measurements over the entire optical surface. The modeling, implemented in our Beatmark software, allows simulating metrology data for optics made by the same vendor and technology. The forecast data is vital for reliable specification for optical fabrication, to be exactly adequate for the required system performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.