Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte. This work has been supported by the German Science Foundation (DFG) through the grant "Planung der Bodenabfertigung an Flughäfen" (Dr 170/9-1, 9-2 and Pe 514/10-2). Terms of use: Documents in2 Corresponding author Abstract This paper surveys a large variety of mathematical models and up-to-date Solution techniques developed for solving a general flight gate scheduling problem that deals with assigning difFerent aircraft activities (arrival, departure and intermediate parking) to distinct aircraft stands or gates. The aim of the work is both to present various models and Solution techniques which are available in nowadays literature and to give a general idea about new open problems that arise in practise. We restrict the scope of the paper to flight gate Management without touching scheduling of ground handling Operations.Keywords: flight gate scheduling, assignment of aircraft activities to terminals, survey of models and algorithms.
This paper addresses an airport gate assignment problem with multiple objectives. The objectives are to minimize the number of ungated flights and the total passenger walking distances or connection times as well as to maximize the total gate assignment preferences. The problem examined is an integer program with multiple objectives (one of them being quadratic) and quadratic constraints. Of course, such a problem is inherently difficult to solve. We tackle the problem by Pareto simulated annealing in order to get a representative approximation for the Pareto front. Results of computational experiments are presented. To the best of our knowledge, this is the first attempt to consider the airport gate assignment problem with multiple objectives.
This paper addresses a general multiobjective optimization problem. One of the most widely used methods of dealing with multiple conflicting objectives consists of constructing and optimizing a so-called achievement scalarizing function (ASF) which has an ability to produce any Pareto optimal or weakly/properly Pareto optimal solution. The ASF minimizes the distance from the reference point to the feasible region, if the reference point is unattainable, or maximizes the distance otherwise. The distance is defined by means of some specific kind of a metric introduced in the objective space. The reference point is usually specified by a decision maker and contains her/his aspirations about desirable objective values. The classical approach to constructing an ASF is based on using the Chebyshev metric L ∞ . Another possibility is to use an additive ASF based on a modified linear metric L 1 . In this paper, we propose a parameterized version of an ASF. We introduce an integer parameter in order to control the degree of metric flexibility varying from L 1 to L ∞ . We prove that the parameterized ASF supports all the Pareto optimal solutions. Moreover, we specify conditions under which the Pareto optimality of each solution is guaranteed. An illustrative example for the case of three objectives and comparative analysis of parameterized ASFs with different values of the parameter are given. We show that the parameterized ASF provides the decision maker with flexible and advanced tools to detect Pareto optimal points, especially those whose detection with other ASFs is not straightforward since it may require changing essentially the reference point or weighting coefficients as well as some other extra computational efforts.
Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte. This paper addresses the robust spanning tree problem with interval data, i.e. the case of classical minimum span ning tree problem whe n edge weights are not fixed but take their values from some intervals associated with edges. The problem c onsists in finding a spanning tree that minimizes so-called robust deviation, i.e. deviation from an optimal Solution under the worst case realization of interval weights. As it was proven in [8], the problem is NP-hard, therefore it is of great interest to tackle it with some metaheuristic approach, namely simulated annealing, in order to calculate an approximate Solution for large scale instances efficiently. We describe theoretical aspects and present the results of co mputational experiments. To the best of our knowledge, this is the first attempt to develop a metaheuristic approach for solving the robust spanning tree problem. Terms of use: Documents in EconStor may
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.