The rapid growth of approved biotherapeutics, e.g., monoclonal antibodies or immunoglobulins G (IgGs), demands improved techniques for their quality control. Traditionally, proteolysis-based bottom-up mass spectrometry (MS) has been employed. However, the long, multistep sample preparation protocols required for bottom-up MS are known to potentially introduce artifacts in the original sample. For this reason, a top-down MS approach would be preferable. The current performance of top-down MS of intact monoclonal IgGs, though, enables reaching only up to ∼30% sequence coverage, with incomplete sequencing of the complementarity determining regions which are fundamental for IgG's antigen binding. Here, we describe a middle-down MS protocol based on the use of immunoglobulin G-degrading enzyme of Streptococcus pyogenes (IdeS), which is capable of digesting IgGs in only 30 min. After chemical reduction, the obtained ∼25 kDa proteolytic fragments were analyzed by reversed phase liquid chromatography (LC) coupled online with an electron transfer dissociation (ETD)-enabled hybrid Orbitrap Fourier transform mass spectrometer (Orbitrap Elite FTMS). Upon optimization of ETD and product ion transfer parameters, results show that up to ∼50% sequence coverage for selected IgG fragments is reached in a single LC run and up to ∼70% when data obtained by distinct LC-MS runs are averaged. Importantly, we demonstrate the potential of this middle-down approach in the identification of oxidized methionine residues. The described approach shows a particular potential for the analysis of IgG mixtures.
This tutorial review describes the principles and practices of electron capture and transfer dissociation (ECD/ETD or ExD) mass spectrometry (MS) employed for peptide and protein structure analysis. ExD MS relies on interactions between gas phase peptide or protein ions carrying multiple positive charges with either free low-energy (~1 eV) electrons (ECD), or with reagent radical anions possessing an electron available for transfer (ETD). As a result of recent implementation on sensitive, high resolution, high mass accuracy, and liquid chromatography timescale-compatible mass spectrometers, ExD, more specifically, ETD MS has received particular interest in life science research. In addition to describing the fundamental aspects of ExD radical ion chemistry, this tutorial provides practical guidelines for peptide de novo sequencing with ExD MS, as well as reviews some of the current capabilities and limitations of these techniques. The merits of ExD MS are discussed primarily within the context of life science research.
The primary structural information of proteins employed as biotherapeutics is essential if one wishes to understand their structure-function relationship, as well as in the rational design of new therapeutics and for quality control. Given both the large size (around 150 kDa) and the structural complexity of intact immunoglobulin G (IgG), which includes a variable number of disulfide bridges, its extensive fragmentation and subsequent sequence determination by means of tandem mass spectrometry ( Top-down mass spectrometry (MS) 1 (1-3) has continued to demonstrate its particular advantages over traditionally employed bottom-up MS strategies (4). Specifically, top-down MS allows the characterization of specific protein isoforms originating from the alternative splicing of mRNA that code single nucleotide polymorphisms and/or post-translational modifications (PTMs) of protein species (5). Intact protein molecular weight (MW) determination and subsequent gasphase fragmentation of selected multiply charged protein ions (referred to as tandem MS or MS/MS) theoretically might result in complete protein sequence coverage and precise assignment of the type and position of PTMs, amino acid substitutions, and C-or N-terminal truncations (6), whereas the bottom-up MS approach allows only the identification of a certain protein family when few or redundant peptides are found for a particular protein isoform. At a practical level, however, top-down MS-based proteomics struggles not only with the single-or multi-dimensional separation of undigested proteins, which demonstrates lower reproducibility and repeatability than for peptides, but also with technical limitations present in even state-of-the-art mass spectrometers. The outcome of a top-down MS experiment depends indeed on the balance between the applied resolution of the mass spectrometer and its sensitivity. The former is required for unambiguous assignment of ion isotopic clusters in both survey and MS/MS scans, whereas the latter is ultimately dependent on the scan speed of the mass analyzer, which determines the number of scans that can be accumulated for a given analyte ion on the liquid chromatography (LC) timescale to enhance the resulting signal-to-noise ratio (SNR). Until recently, the instrument of choice for top-down MS has been the Fourier transform ion cyclotron resonance (FT-ICR) mass From the ‡Biomolecular Mass
The inhibition activity of a series of anticancer metal complexes based on platinum, ruthenium, and gold metal ions was evaluated on the zinc-finger protein PARP-1, either purified or directly on protein extracts from human breast cancer MCF7 cells. Information on the reactivity of the metal complexes with the PARP-1 zinc-finger domain was obtained by high-resolution ESI FT-ICR mass spectrometry. An excellent correlation between PARP-1 inhibition in protein extracts and the ability of the complexes to bind to the zinc-finger motif (in competition with zinc) was established. The results support a model whereby displacement of zinc from the PARP-1 zinc finger by other metal ions leads to decreased PARP-1 activity. In vitro combination studies of cisplatin with NAMI-A and RAPTA-T on different cancer cell lines (MCF7, A2780, and A2780cisR) showed that, in some cases, a synergistic effect is in operation.
An electron injection system based on an indirectly heated ring-shaped dispenser cathode has been developed and installed in a 7 Tesla Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. This new hardware design allows high-rate electron capture dissociation (ECD) to be carried out by a hollow electron beam coaxial with the ion cyclotron resonance (ICR) trap. Infrared multiphoton dissociation (IRMPD) can also be performed with an on-axis IR-laser beam passing through a hole at the centre of the dispenser cathode. Electron and photon irradiation times of the order of 100 ms are required for efficient ECD and IRMPD, respectively. As ECD and IRMPD generate fragments of different types (mostly c, z and b, y, respectively), complementary structural information that improves the characterization of peptides and proteins by FTICR mass spectrometry can be obtained. The developed technique enables the consecutive or simultaneous use of the ECD and IRMPD methods within a single FTICR experimental sequence and on the same ensemble of trapped ions in multistage tandem (MS/MS/MS or MS(n)) mass spectrometry. Flexible changing between ECD and IRMPD should present advantages for the analysis of protein digests separated by liquid chromatography prior to FTICRMS. Furthermore, ion activation by either electron or laser irradiation prior to, as well as after, dissociation by IRMPD or ECD increases the efficiency of ion fragmentation, including the w-type fragment ion formation, and improves sequencing of peptides with multiple disulfide bridges. The developed instrumental configuration is essential for combined ECD and IRMPD on FTICR mass spectrometers with limited access into the ICR trap.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.