We report on the state-of-the art synthesis and improved luminescence properties of thiol-capped CdTe nanocrystals (NCs) synthesized in water. The optimized pH (12) and molar ratio of thiol to Cd ions (1.3:1) increases the room-temperature photoluminescence quantum efficiency of as-synthesized CdTe NCs capped by thioglycolic acid (TGA) to values of 40−60%. By employing mercaptopropionic acid (MPA) as a stabilizer, we have synthesized large (up to 6.0 nm in diameter) NCs so that the spectral range of the NCs' emission currently available within this synthetic route extends from 500 to 800 nm. Sizing curve for thiol-capped CdTe NCs is provided. In contrast to CdTe NCs capped by TGA, MPA-capped CdTe NCs show up to 1 order of magnitude longer (up to 145 ns) emission decay times, which become monoexponential for larger particles. This phenomenon is explained by considering the energetics of the Te-related traps in respect to the valence-band position of CdTe NCs. The correlation between luminescence quantum efficiencies, luminescence lifetimes, and Stokes shifts of CdTe NC fractions is demonstrated, being in agreement with a model proposed previously that connects the emission properties of NCs with their surface quality determined by the Oswald ripening conditions during growth. imaging, and plasmonics.
Nanotechnology is a fast-growing area, involving the fabrication and use of nano-sized materials and devices. Various nanocomposite materials play a number of important roles in modern science and technology. Magnetic and fluorescent inorganic nanoparticles are of particular importance due to their broad range of potential applications. It is expected that the combination of magnetic and fluorescent properties in one nanocomposite would enable the engineering of unique multifunctional nanoscale devices, which could be manipulated using external magnetic fields. The aim of this review is to present an overview of bimodal “two-in-one” magnetic-fluorescent nanocomposite materials which combine both magnetic and fluorescent properties in one entity, in particular those with potential applications in biotechnology and nanomedicine. There is a great necessity for the development of these multifunctional nanocomposites, but there are some difficulties and challenges to overcome in their fabrication such as quenching of the fluorescent entity by the magnetic core. Fluorescent-magnetic nanocomposites include a variety of materials including silica-based, dye-functionalised magnetic nanoparticles and quantum dots-magnetic nanoparticle composites. The classification and main synthesis strategies, along with approaches for the fabrication of fluorescent-magnetic nanocomposites, are considered. The current and potential biomedical uses, including biological imaging, cell tracking, magnetic bioseparation, nanomedicine and bio- and chemo-sensoring, of magnetic-fluorescent nanocomposites are also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.