We developed a novel technique for the efficient conjugation of oligonucleotides with various alkyl azides such as fluorescent dyes, biotin, cholesterol, N-acetylgalactosamine (GalNAc), etc. using copper-catalysed alkyne-azide cycloaddition on the solid phase and CuI·P(OEt) as a catalyst. Conjugation is carried out in an oligonucleotide synthesizer in fully automated mode and is coupled to oligonucleotide synthesis and on-column deprotection. We also suggest a set of reagents for the construction of diverse conjugates. The sequential double-click procedure using a pentaerythritol-derived tetraazide followed by the addition of a GalNAc or Tris-GalNAc alkyne gives oligonucleotide-GalNAc dendrimer conjugates in good yields with minimal excess of sophisticated alkyne reagents. The approach is suitable for high-throughput synthesis of oligonucleotide conjugates ranging from fluorescent DNA probes to various multi-GalNAc derivatives of 2'-modified siRNA.
GalNAc conjugation is emerging as a dominant strategy for delivery of therapeutic oligonucleotides to hepatocytes. The structure and valency of the GalNAc ligand contributes to the potency of the conjugates. Here we present a panel of multivalent GalNAc variants using two different synthetic strategies. Specifically, we present a novel conjugate based on a support-bound trivalent GalNAc cluster, and four others using a GalNAc phosphoramidite monomer that was readily assembled into tri- or tetravalent designs during solid phase oligonucleotide synthesis. We compared these compounds to a clinically used trivalent GalNAc cluster both in vitro and in vivo. In vitro, cluster-based and phosphoramidite-based scaffolds show a similar rate of internalization in primary hepatocytes, with membrane binding observed as early as 5 min. All tested compounds provided potent, dose-dependent silencing, with 2-4% of injected dose recoverable from liver after 1 week. The two preassembled trivalent GalNAc clusters showed higher tissue accumulation and gene silencing relative to di-, tri-, or tetravalent GalNAc conjugates assembled via phosphoramidite chemistry.
Abstract—
An azido-derivative of a fluorescein bifluorophore was obtained and used for the synthesis of “molecular beacon”-type oligonucleotide fluorogenic probes for RT-PCR. Eight probe variants were synthesized based on an optimized sequence: with one or two quencher residues at the 3'-end, with a single or bifluorophore fluorescein label attached to 5'-end using modifying phosphoramidites (short linker) or “click reaction” (long linker). Comparison of probes in RT-PCR showed that probes with a doubled quencher (single fluorescein on a short linker) and doubled dye on a short linker (single dye) are somewhat superior in sensitivity to a standard probe (single quencher, single dye on a short linker) by the value of ΔCt = 1–2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.