The relative influences of biotic and abiotic processes on travertine fabrics are still not well understood, despite increasing interest in the last decade to better understand the record of ancient microbial life and sedimentary fabrics in microbial hydrocarbon reservoirs. This study examines travertines at Satono‐yu hot spring in Japan (the temperature of water flowing over the travertine was ca 35°C), to better understand the interaction between depositional, hydrochemical and microbial parameters at different flow settings. Characteristics of the bulk hydrochemistry, mineralogy (exclusively aragonite) and the driving force for precipitation (primarily abiotic CO2 degassing with some photosynthetic microbial contribution) were similar among all of the flow settings. Conversely, the increase in flow velocity suppressed the influence of photosynthesis and enhanced the abiotic precipitation due to the thinner diffusive boundary layer at the travertine surface–water interface. Additionally, the increase in flow velocity changed the microbial composition and decreased the bacterial diversity by reflecting their adhesion efficiency on the travertine substrate. The acidity of the cyanobacterial sheaths controls the aragonite nucleation rate and the resulting calcification, even at significantly high equilibrium CO2 partial pressure (ca 22 to 28 matm), high dissolved inorganic carbon concentration (ca 35 to 38 mmol l−1), and elevated aragonite saturation state (ca 20‐fold to 34‐fold). Therefore, the increase in flow velocity suppresses the microbial influence with respect to the increase in the saturation state, the nucleation site supply and pore space generation. Overall, this results in the predominance of abiotic precipitation under high flow velocities. Consequently, a sparse‐micritic fabric with abundant interlamina porosity forms under lower flow velocity where the microbial influence is effective, while a dense‐sparitic fabric with little inter‐crystalline porosity forms under higher flow velocity where abiotic precipitation prevails. These findings provide an essential base for assessing the formation processes of ancient travertines and comparable deposits from petrological fabrics.
Although environmental changes and evolution of life are potentially recorded via microbial carbonates, including laminated stromatolites and clotted thrombolites, factors controlling their fabric are still a matter of controversy. Herein, we report that the exopolymer properties of different cyanobacterial taxa primarily control the microbial carbonates fabrics in modern examples. This study shows that the calcite encrustation of filamentous Phormidium sp. secreting acidic exopolymers forms the laminated fabric of stromatolites, whereas the encrustation of coccoid Coelosphaeriopsis sp. secreting acidic exopolymers and poor calcification of filamentous Leptolyngbya sp. secreting non-acidic exopolymers form peloids and fenestral structures, respectively, i.e. the clotted fabric of thrombolites. Based on these findings, we suggest that the rise and decline of cyanobacteria possessing different exopolymer properties caused the expansion of thrombolites around the Proterozoic/Cambrian boundary.
Contributions of abiotic and biotic processes on travertine deposition are still not well‐understood due to technical difficulties, despite that the travertines draw attention as analogues for ancient microbial carbonates and oil reservoirs. To evaluate their contributions, this study examined eight hot springs in Japan. Water chemistry analyses showed common downstream trends: a decrease in CO2 concentration and increases in CO32− concentration and pH. Mineralogical analysis showed that the constituent minerals of travertines at six hot springs were both calcite and aragonite, while one was just calcite and another only aragonite. Microscopic observations of travertine surfaces indicated the dominance of cyanobacteria secreting extracellular polymeric substances without a detectable amount of carboxyl groups. Small particles were sometimes entangled/covered by these cyanobacteria. Microelectrode measurements showed the occurrence of abiotic CaCO3 precipitation and photosynthetic induction/inhibition of CaCO3 precipitation, the extent of which was different at each site. By integrating these results, the contributions of abiotic and biotic processes were evaluated. Cyanobacteria inhabiting travertine surfaces were generally not calcified regardless of an ambient high CaCO3 saturation state; instead, they contributed to creating pore spaces and trap/bind suspended particles. Downstream CO2 degassing increased the CaCO3 saturation state by shifting carbonate chemical equilibrium and caused abiotic CaCO3 precipitation. Suspended particles trapped by cyanobacteria increased the surface area for crystal growth to further accelerate precipitation. The contribution of photosynthesis‐induced CaCO3 precipitation was low because of several factors, including variable cyanobacteria populations and photosynthetic inhibition of CaCO3 precipitation. The average contributions of photosynthesis‐induced CaCO3 precipitation, Ca2+ adsorption and abiotic precipitation in the eight hot springs were 16%, 3% and 81%, respectively, indicating predominance of the abiotic process for travertine deposition. Mineralogical composition of travertines significantly correlated with concentrations of SO42− and Mg2+, much more than with Mg/Ca ratio and water temperature, suggesting their importance for controlling CaCO3 polymorphs in travertines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.