MRI could provide important information about the prenatal differential diagnosis of CHMTF and PMD, based on the pathophysiology and characteristics of the diseases.
Pathological hemorrhagic infarction of ovarian torsion was associated with several MR imaging findings, including high signal intensity on T1WI/DWI, and irregular wall thickening on T2WI.
Endometrial cancer (EC) is the most common gynecological tumor in developed countries, and preoperative risk stratification is essential for personalized medicine. There have been several radiomics studies for noninvasive risk stratification of EC using MRI. Although tumor segmentation is usually necessary for these studies, manual segmentation is not only labor-intensive but may also be subjective. Therefore, our study aimed to perform the automatic segmentation of EC on MRI with a convolutional neural network. The effect of the input image sequence and batch size on the segmentation performance was also investigated. Of 200 patients with EC, 180 patients were used for training the modified U-net model; 20 patients for testing the segmentation performance and the robustness of automatically extracted radiomics features. Using multi-sequence images and larger batch size was effective for improving segmentation accuracy. The mean Dice similarity coefficient, sensitivity, and positive predictive value of our model for the test set were 0.806, 0.816, and 0.834, respectively. The robustness of automatically extracted first-order and shape-based features was high (median ICC = 0.86 and 0.96, respectively). Other high-order features presented moderate-high robustness (median ICC = 0.57–0.93). Our model could automatically segment EC on MRI and extract radiomics features with high reliability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.