Alveolar mammary epithelial cells (MECs) in mammary glands are highly specialized cells that produce milk for suckling infants. Alveolar MECs also form less permeable tight junctions (TJs) to prevent the leakage of milk components after parturition. In the formation process of less permeable TJs, MECs show a selective downregulation of Cldn4 and a localization change of Cldn3. To investigate what induces less permeable TJs through these compositional changes in Cldns, we focused on two lactogenesis-related hormones: prolactin (Prl) and glucocorticoids. Prl caused a downregulation of Cldn3 and Cldn4 with the formation of leaky TJs in MECs in vitro. Prl-treated MECs also showed low β-casein expression with the activation of STAT5 signaling. By contrast, dexamethasone (Dex), a glucocorticoid analogue, upregulated Cldn3 and Cldn4, concurrent with the formation of less permeable TJs and the activation of glucocorticoid signaling without the expression of β-casein. Cotreatment with Prl and Dex induced the selective downregulation of Cldn4 and the concentration of Cldn3 in the region of TJs concurrent with less permeable TJ formation and high β-casein expression. The inhibition of Prl secretion by bromocriptine in lactating mice induced the upregulation of Cldn3 and Cldn4 concurrent with the downregulation of milk production. These results indicate that the coactivation of Prl and glucocorticoid signaling induces lactation-specific less permeable TJs concurrent with lactogenesis.
Isoflavones and their metabolites influence the milk production ability of MECs through different interactions with prolactin/STAT5 signaling. Simultaneous intake of multiple isoflavones by consumption of legumes may induce promotive or adverse effects on lactating MECs.
During lactation, mammary epithelial cells (MECs) produce various milk components. To synthesize these milk components, MECs take up amino acids, fatty acids, and glucose through transporters and channels existing in basolateral membranes. Caseins are abundantly synthesized by MECs as milk-specific proteins (Kumar et al., 1994; Stewart et al., 1987). Lactotransferrin (LTF) is a whey protein with antibacterial activity (Nuijens, Berkel, & Schanbacher, 1996). Lactose is synthesized by the complex of galactosyltransferase and α-lactalbumin
During lactation, mammary epithelial cells (MECs) form the blood-milk barrier by less-permeable tight junctions (TJs) to prevent the leakage of milk components. Phytoestrogens affect the proliferation, differentiation, and apoptosis of MECs. However, it remains unclear whether phytoestrogens are involved in the blood-milk barrier. Therefore, we investigated the influence of phytoestrogens (coumestrol, genistein, and daidzein) by using an in vitro mouse-MEC-culture model. The results showed that coumestrol and genistein changed the expression of TJ proteins (claudins-3 and -4 and occludin), weakened barrier function, and reduced β-casein production. Daidzein also weakened barrier function without inhibiting β-casein production. Additionally, coumestrol and genistein induced apoptosis in MECs. These results indicate that phytoestrogens weaken the blood-milk barrier by directly affecting TJs and the cellular viability of lactating MECs in different ways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.