We published a CD-ROM "Geothermal Gradient and Heat Flow Data in and around Japan" (Tanaka et al., 2004a), which includes values of heat flow and geothermal gradient data. This compilation was intended to improve the understanding of variations in the thermal regime in and around Japan. Our current knowledge of the heat flow distribution can be increased by including information derived from geothermal gradient data contained in this compilation. In southern Kyushu, the pattern of heat flow is significantly modified by incorporation of estimates of heat flow from geothermal gradient data.
, annual self-potential (SP) surveys were carried out on Izu-Oshima, a small volcanic island. A terrain-related SP distribution of about -1 mV per meter of elevation was observed outside the caldera in all five surveys. Inside the caldera, SP increases from about -350 mV to near 0 mV (relative to the coastline) as the summit crater is approached, although negative anomalies of small spatial extent are manifest. Selfpotential inside the caldera decreased by about 100 mV between the March 1989 and the March 1990 surveys, which appears to be correlated with a significant decline in the degassing rate from the summit crater. After 1990, the SP distribution is quite steady along the entire survey line which extends from the west coast through the southern part of the caldera, and ends east of Ura-sabaku. Recently a postprocessor has been developed to calculate space/time distributions of electrokinetic potentials resulting from histories of underground conditions (pressure, temperature, salt concentration, fiowrate etc.) computed by multiphase multi-component unsteady geothermal reservoir simulations (Ishido and Pritchett, 1996). We applied this postprocessor to a simple two-dimensional model of hydrothermal activity in a volcanic island. The low potentials in areas of high elevation are reproduced in the model, and are caused by downflow of meteoric waters. The high potential centered at the summit crater is found to be produced by upflows of volcanic gas and vapor which diminish meteoric water downflow near the volcanic conduit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.