We study the structure formation and flow properties of colloidal dispersions comprised of Janus spheres, Janus spherocylinders, and their mixtures, using hybrid molecular dynamics simulations that take into account hydrodynamic interactions.
We performed molecular simulations to investigate the morphologies and phase diagrams of self-assembled diblock Janus nanoparticles (JNPs) confined in nanotubes. A JNP is a unique anisotropic nanoparticle, which typically has more than two distinct surfaces, each with different properties. We derived qualitative phase diagrams of axial pressure versus the ratio of the diameter of the nanoparticle and the nanotube. Three distinct types of nanotube walls were considered: hydrophobic, hydrophilic, and hydroneutral. We observed diverse morphologies in JNP solutions, many of which have not been observed in bulk solutions. We also compared the self-assembled structures of diblock and triblock patchy particles. Under weak confinement, significant differences were observed between the different JNP designs. The orientation ordering and self-assembly behaviours of the JNPs can be qualitatively predicted based on the chemical nature of the nanotube wall and the JNP design.
Site-selective surface modification on the shape-controlled nanocrystals is a key approach in the programmed self-assembly of inorganic colloidal materials. This study demonstrates a simple methodology to gain self-assemblies of semiconductor nanocrystals with branched shapes through tip-to-tip attachment. Short-chained water-soluble cationic thiols are employed as a surface ligand for CdSe tetrapods and CdSe/CdS core/shell octapods. Because of the less affinity of arm-tip to the surface ligands compared to the arm-side wall, the tip-surface becomes uncapped to give a hydrophobic nature, affording an amphiphilic surface pattern. The amphiphilic tetrapods aggregated into porous agglomerates through tip-to-tip connection in water, while they afforded a hexagonally arranged Kagome-like two-dimensional (2D) assembly by the simple casting of aqueous dispersion with the aid of a convective self-assembly mechanism. A 2D net-like assembly was similarly obtained from amphiphilic octapods. A dissipative particle dynamics simulation using a planar tripod model with an amphiphilic surface pattern reproduced the formation of the Kagome-like assembly in a 2D confined space, demonstrating that the lateral diffusion of nanoparticles and the firm contacts between the hydrophobic tips play crucial roles in the self-assembly.
Janus nanoparticles (JNPs) have received considerable attention because of their characteristic physical properties that are due to more than two distinct chemical or physical surfaces. We investigated the rheological properties of a JNP solution in the nanotubes using a computer simulation. Prediction and control of the self-assembly of colloidal nanoparticles is of critical importance in materials chemistry and engineering. Herein, we show computer simulation evidence of a new type of velocity profile and a hallmark shear-thinning behavior by confining a JNP solution to a nanotube with hydrophobic and hydrophilic wall surfaces. We derived curves of the shear rate versus the viscosity for two quasi-one-dimensional nanotube systems including diluted and concentrated volume fractions of JNP solutions. For the diluted system, under relatively low shear rates, shear-thinning behavior with a moderate slope or behavior similar to a Newtonian fluid is observed because of the clustering of JNPs. Under relatively high shear rates, the slope of shear thinning changes markedly because the self-assembled structures are rearranged. Moreover, for concentrated systems, when the nanotube wall is hydrophobic, new characteristic velocity profiles that have not been reported before are observed. Our simulation offers a guide to control the rheological properties of JNP solutions by the chemical patterns on the surfaces of nanochannels, the effect of confinement, and the self-assembled structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.